CSE 322
Intro to Formal Models in CS
Homework \#2 (Rev b)
Due: Friday, 15 Jan
W. L. Ruzzo

8 Jan 10

Please place problem 4 on separate sheet(s) and turn in separately from 1-3.

1. Using the following definition of string length,

$$
|x|= \begin{cases}0 & \text { if } x=\epsilon \\ |y|+1 & \text { if } x=y a \text { for some } y \in \Sigma^{*} \text { and } a \in \Sigma\end{cases}
$$

prove, by induction on $|v|$, that

$$
\forall u, v \in \Sigma^{*},|u v|=|u|+|v| .
$$

2. For the DFA below, prove for all $i \in Q$ and $w \in \Sigma^{*}$ that M is in state i after reading w if and only if $\#_{1}(w) \equiv i(\bmod 2)$, where $\#_{1}(w)$ is the number of 1 's in the string w. Prove that $L(M)=\{w \mid$ $\left.\#_{1}(w) \equiv 1(\bmod 2)\right\}$.

3. Let $\Sigma=\{0,1\}$. For any string $w \in \Sigma^{*}$, define a function from $b: \Sigma^{*} \rightarrow \mathbb{N}$ (the natural numbers) as follows:

$$
b(w)= \begin{cases}0 & \text { if } w=\epsilon \\ 2 * b(x)+a & \text { if } w=x a \text { for some } x \in \Sigma^{*} \text { and } a \in \Sigma .\end{cases}
$$

(In the second case of the definition, the " +a " is treating " a " as an integer in the obvious way, rather than as a character from Σ.)
(a) What are $b(1), b(10), b(100), b(1001), b(10011)$? Say in simple English what the function b is. (I want a non-algorithmic description.)
(b) Let $M=(Q, \Sigma, \delta, 0,\{0\})$ where $Q=\{0,1, \ldots, 4\}$ and for all $q \in Q, a \in \Sigma, \delta(q, a)=$ $(2 * q+a) \bmod 5$. Draw M 's state diagram.
(c) Give the sequences of states M is in while reading 10011.
(d) Give a concise, mathematical statement characterizing what state M is in after reading any given string w. E.g., " M is in state i iff $42 *_{1}(w) \equiv i(\bmod 5)$ " is an (incorrect) example of what such a statement might look like.
(e) Prove it, by induction on $|w|$.
(f) Based on (d,e), what is $L(M)$?
4. (a) Give a formal inductive proof of the key claim needed to establish the correctness of the "Cartesian product construction" used in Theorem 1.25 (1st ed.: 1.12): For all $x \in \Sigma^{*}$, and all $r_{1} \in Q_{1}, r_{2} \in Q_{2}$, we will have M in state $\left(r_{1}, r_{2}\right)$ after reading x if and only if M_{i} is in state r_{i} after reading x, for $i=1,2$.
(b) Then use this fact to prove that $L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
(c) Modify the construction of M slightly, giving a DFA M^{\prime} accepting $L\left(M_{1}\right)-L\left(M_{2}\right)$ (i.e., the set of strings in $L\left(M_{1}\right)$ but not in $L\left(M_{2}\right)$). Use part (a) to prove your construction correct (i.e., that $L\left(M^{\prime}\right)=L\left(M_{1}\right)-L\left(M_{2}\right)$.

