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CSE 322 Spring 2010: Take-Home Final Exam 
 

SOLUTIONS 
 

Total: 150 points, 8 questions 
 

Due: Before 4:30pm, Monday, June 7, 2010 
 

Where: CSE Front Desk 
 

 

Instructions:  
1. Write your name and student ID on the first sheet and your last name on all 

sheets.  
2. Write or mark your answers in the space provided. If you need more space, make 

sure you write down the question number and your name on any additional sheets, 
and staple these to the exam. 

3. If you don’t know the answer to a question, don’t omit it - do the best you can. 
You may still get partial credit for whatever you wrote down. 

4. Collaboration policy is the same as for the homework assignments.  
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1. (25 points: 5 each) Circle True (T) or False (F) below. Very briefly justify your 

answers (e.g., by contradiction or an example/counter-example, by citing a theorem 
or result we proved in class, or by briefly sketching a construction). 

 
a. For any two sets A and B, if A is uncountably infinite and B is countably infinite, 

then A ∩ B is countably infinite ………………………….....................…   T      F 
Why/Why not? 

 
FALSE. A ∩ B can be empty which is finite. E.g., 
A=[-2,-1] (set of all real numbers between -2 and -1) and  
B= N, the set of natural numbers.  

 

b. If R is any regular language and L is any context free language, then L°R is 
context-free …………………..………………………..…………………..   T      F 
Why/Why not? 
 
TRUE.  Every regular language is a CFL and CFLs are closed under 
concatenation as you showed in your homework #5.   

 
c. The language {ambncndm | m, n ≥ 0} over Σ = {a,b,c,d} is not context free... T      F 

Why/Why not? 
 
FALSE.  Here’s a CFG for the language:  
S  aSd | B 
B  bBc | ε 



Name: _____________________________________ 
Student ID: _____________________________________ 

2  

1. (cont.) 
 

d. For any two languages A and B, if A ⊆ B, then A is reducible to B…...…   T      F 
Why/Why not? 
 

 FALSE. A hard problem (language) can be a subset of an easy problem and 
not be reducible to the easy problem. E.g., let A = ATM and B = Σ∗. Then, A ⊆ 
B but A is not reducible to B (because Σ∗ is decidable and ATM is not).  
 

e. If language A is reducible to language B and B is undecidable, then A must 
be undecidable………………………………....………………….…….…   T      F 
Why/Why not? 
 
FALSE.  The reduction only proves A ≤ B, and B’s undecidability does not 
tell us anything about A’s hardness.  E.g.,  A = ∅ (the empty language) is 
decidable (via a TM that rejects all strings). A can be reduced to B = ATM 
simply by not using B’s decider at all in the reduction and just rejecting all 
strings. 
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2. (18 points: 6 each) 
Let L = {w | w ∈ {0,1}* and w contains neither 00 nor 11 as a substring}. Give: 
 
(a) The state diagram of a finite automaton (DFA or NFA) accepting L. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) A regular expression denoting L. 
 
The regular expression for the language L is (1 ∪ε) (01)* (0 ∪ε). 
 
 
 
 
 
 
(c) A context-free grammar generating L. 
 

S → A T B   
T → 01T | ε  
A → 1 |  ε 
B → 0 |  ε 

 
 
 
 
 
 
 
 
 
 
You can either follow the constructions given in the lectures/book for converting one of 
these forms to the other or you can just give a direct answer for each part. 

S1 

S2 

0
1S0 

1 

0
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3. (15 points)  
A language is prefix-closed if the prefix of any string in the language is also in the 
language. Show that every infinite prefix-closed context free language contains an 
infinite regular subset. (Hint: Go over the proof of the pumping lemma for context 
free languages and see what it implies if the language is also prefix-closed). 

 
Let L be an infinite prefix-closed context free language. Since L is a CFL, the 
pumping lemma holds. Let p be the pumping length and let s be a string in L 
longer than p. Then s can be split into uvxyz such that uvixyiz ∈ L for all i ≥ 0 
and |vy| ≥ 1.  Since L is prefix-closed, all prefixes of s are also in L, therefore, uvi 
∈ L for all i ≥ 0. Thus, the regular language uv* ⊆ L. If v ≠ ε, uv* is an infinite 
regular subset of L, which proves the statement. If v = ε, then y ≠ ε (since we 
know |vy| ≥ 1). In this case, uxy* is an infinite regular subset of L.
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4.   (12 points)  
A k-PDA is a pushdown automaton with k stacks. Show that 2-PDAs are more 
powerful than conventional PDAs with only 1 stack. (Hint: Give a language that you 
can show is recognizable by a 2-PDA but not by 1-PDAs. An implementation level 
description is sufficient – no need to formally define the 2-PDA). 

 
The language L = {anbncn | n ≥ 0} is not context free as proved in class. Therefore, 
it cannot be recognized by a 1-PDA. L can however be recognized by the 
following 2-PDA: Push all initial a’s on stack #1. Push the following b’s on stack 
#2. Reject if there is an “a” following any “b”. When a “c” is read, pop one a and 
one b for each c. Reject if an a or b is read. If the input ends and both stacks are 
empty, accept, otherwise reject.  
 
Alternate solution: 
The language L = {0n1n0n | n ≥ 0} is not context free as proved in class (see lecture 
slides). Therefore, it cannot be recognized by a 1-PDA. L is however decidable as 
shown in class (see lecture slides), i.e., L is accepted by a TM. Problem 5 proves 
that a 2-PDA can simulate an arbitary TM. Therefore, L can be recognized by a 
2-PDA. 
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5.  (15 points) 
Show that a 2-PDA is in fact as powerful as a Turing machine (TM). Describe how a 2-
PDA can simulate an arbitrary TM. How is a particular configuration uqiv of the TM, 
where u, v ∈ Γ*, represented by the 2-PDA using its two stacks? How does the 2-PDA 
simulate the TM transitions δ(qi,a) = (qj,b,L) and δ(qi,a) = (qj,c,R)? An implementation 
level description is sufficient – no need to formally define the 2-PDA. 

 
Our Turing machine simulator has 2 stacks, and in each step, it can read (pop) 
either of the stacks, or push a character onto either of them. It can also read the 
input. Informally, the 2-PDA does the following: 

i. It pushes the TM start state q0 onto stack1. It then reads all the input, 
pushing it onto stack1, until the input is exhausted.  

ii. It pops stack1, pushing each popped element onto stack2, until it 
reaches the marker indicating the TM state. 

iii. At all times, the Turing machine configuration TqaS (where T is the 
string to the left of the TM head, q is the current TM state, a  is the 
symbol under the head and S is the string to the head’s right) is 
represented by the 2-PDA configuration: Tq on stack1 (with q at the 
top of stack1), and aS in the reverse order on stack2 (i.e., with the 
symbol a on top). 

iv. For each step of the TM, the 2-PDA pops the top of stack1 (which is the 
TM state), and the top of stack2 (which is the symbol currently under 
the simulated machine’s head). 

v. This information is all we need to make a TM transition. The 2-PDA 
simulates δ(q,a) = (q’, b, L) by (i) pushing b onto stack2 (ii) popping 
stack1 and pushing the symbol obtained onto stack2 (iii) pushing q’ 
onto stack 1. It simulates δ(q,a) = (q’, b, R) by pushing b and q’, in that 
order, onto the top of stack 1.  Thus the correct resulting TM 
configuration is represented in the format of step iii, above.  

 
One small detail: If at any time at step iv, the 2-PDA finds that stack2 is 
empty, it first pushes a blank onto stack2, and then performs step iv. 
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6.  (20 points: 10 each)    

a. Let L1 and L2 be any two decidable languages, decided by TMs M1 and M2 
respectively. Construct a decider TM M for the language L1 - L2. Give a high 
level description, starting with M = “On input w: …”. 

 
  
On input w, our decider M does the following:  
1. Run M1 on input w. The computation is guaranteed to halt, since M1 is a 

decider for the language L1. 
2. Run M2 on input w. Again, the computation is guaranteed to halt. 
3. If M1 accepted, and M2 rejected, then accept the string w, else reject. 
 

 
 
 

b.   Let L1 and L2 be any two Turing-recognizable languages, recognized by TMs M1 
and M2 respectively. Prove or Disprove: L1 - L2 is Turing-recognizable. Either 
sketch a proof or give a specific counterexample. 

 
 

L1-L2 is not necessarily Turing-recognizable.  
 
Counterexample: Consider L1  = Σ*,  and  L2  =  ATM. We know that L2 is Turing-
recognizable but not decidable.  Now L1-L2 is the complement of the language L2. 
If we have a recognizer for a language and its complement, then we have a 
decider for the language. This is a contradiction, since ATM is undecidable.  
Hence we cannot always build a recognizer for the language L1-L2. 
 
Partial credit (5 points) if an explanation is given as to why the proof in (a) will 
not work (M2 may not halt). (This is not a counterexample though) 
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7.  (30 points: 15, 15 points) For the following proofs, you may use high-level 
descriptions of the required TMs. 
 
a. Show that for any infinite language L, L is decidable iff some enumerator TM 

enumerates L in lexicographic order. 
 
 

Proof.   
( ) Let L be a decidable language. Then, there exists a decider TM D  
 such that L(D) = L. We can use D to construct an enumerator E for   
 L as follows:  
  E =  “Ignore the input. 
     1. Repeat the following for i = 1, 2, 3, … 
     2. Let wi be the ith string in the lexicographic ordering of  
         strings in ∑*. 
     3. Run D on wi. If D accepts, then print wi.” 
 Clearly, E prints all strings in L in lexicographic order. 
 
( ) Let E be an enumerator that prints all strings in the language L   
   in lexicographic order. Then, we can construct a decider D for L   
   as follows: 
  D = “On input w: 
         1. Run enumerator E and let w1, w2, w3, … be the strings  
             printed by E. 
         2. If w = wi for some i, then ACCEPT w and halt. 
         3. If at any time E prints a string wi that comes after w in  
             the lexicographic ordering of strings in ∑*, then   
             REJECT w and halt.” 
 Since E is guaranteed to print strings in lexicographic order, if it   
 prints a string that comes after w in lex. order, then we can be          
      sure that it will never print w, and therefore, w is not in L. 
 It is clear from D’s description that D always halts and L(D) = L. 

 
 
 
 
 
 
 
 
 
 
 
 
(continued on next page) 
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7. (cont.) 
 
b. Show that every infinite Turing-recognizable language has an infinite decidable 

subset.  (Hint: Use the result in (a) and the result you know regarding Turing-
recognizable languages and enumerator TMs (Theorem 3.21 in the text)). 

 
Let A be an infinite Turing-recognizable language. Then, there exists an enumerator 
E that enumerates all strings in A (in some order, possibly with repetitions). We 
construct another enumerator E’ that prints a subset of A in lexicographic order: 
“Ignore the input. 

1. Simulate E. When E prints its first string w1, print w1 and let prev_w = w1. 
2. Continue simulating E.  
3. When E is ready to print a new string w, check to see if w is longer than 

prev_w (this ensures w occurs after prev_w in lex. order). If so, then print w 
and let prev_w = w, otherwise do not print w.  

4. Go to 2.” 
 
It is clear that E’ as constructed above only prints strings in A, therefore its 
language is a subset of A. Since A is infinite, there will always be strings in A longer 
than the current prev_w  –  E will eventually print one of these and so will E’ (and 
update prev_w). Therefore, the language of E’ is also infinite. Finally, since E’ only 
prints strings in lexicographic order, its language is decidable as proved in (a). 
Thus, the language of E’ is an infinite decidable subset of A. 
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8. (15 points)   
After proposing a toast to “Touring machines,” an already toasted CS major from 
[name-deleted] university claims that the problem of figuring out whether a given 
TM accepts a finite number of strings is simple enough to be decidable. Having 
taken CSE 322, you know better, so you define the language FINITETM = { 〈M〉 | M 
is a TM and L(M) is finite}. Show that FINITETM is undecidable by giving a 
reduction from a known undecidable language to FINITETM. For your reduction, 
you may use any of the languages shown to be undecidable in Section 5.1 in the 
textbook (up to Theorem 5.4 and its proof).  (Hint: Use a reduction roughly along 
the lines of the one used in Theorem 5.2 and discussed in class.) 

 

 
         otherwise M’ rejects or loops on x. 

 
 

 
 
 
 
 
 
 

 
 

 
 

 
[End of Exam] 

 
Have a great summer! 


