All good things...must come to a q_{ACC} state

Course Highlights

R. Rao, CSE 322

Chapter 0: Highlights

✦ Sets, strings, and languages

- ⇒ Operations on strings/languages (concat °, *, \cup , -, etc) ⇒ Complement of L = Σ^* - L
- $\Leftrightarrow \text{Lexicographic ordering of strings in } \Sigma^*$
- Proof techniques
- Pigeonhole principle

Dovetailing and Diagonalization
 Countably infinite and uncountable sets

Regular Languages: Highlights

- ◆ DFAs and NFAs⇒ Equivalance
- Regular languages and their properties
- ✦ Regular expressions and GNFAs
 ⇒ Equivalence with NFAs/DFAs
- The Pumping lemma

Da Pumpin' Lemma

(adapted from a poem by Harry Mairson)

Hear it on the new album: Dig dat funky DFA

Any regulah language L has a magic numba pAnd any long-enuff word s in L has da followin' propa'ty: Amongst its first p symbols issa segment u can find Whoz repetition or omission leaves s amongst its kind.

So if ya find a lango *L* which fails dis acid test, And some long word ya pump becomes distinct from all da rest, By contradixion ya have shown *L* is not A regular homie, resilient to da pumpin' u've wrought.

But if, on da otha' hand, *s* stays within its *L*, Then eitha *L* is regulah, or else ya chose not well. For *s* is *xyz*, where *y* is not empty, And *y* must come befo' da $p+1^{th}$ symbol u see.

Context Free Languages: Highlights

◆ Context Free Grammars: CFG G = (V, Σ, R, S)
 ⇒ Ambiguity

- Closure properties of Context-Free languages
 ⇒ Closed under ∪, concat, * *but not* ∩ *or complementation*
- Pushdown Automata: PDA P = (Q, Σ , Γ , δ , q_0 , F)
- ♦ CFGs and PDAs are equivalent in computational power
- Return of the Pumping Lemma
 - Property obeyed by all CFLs
 - Used to show languages are not CFLs

Turing Machines

- ★ TM M = (Q, Σ, Γ, δ, q₀, q_{ACC}, q_{REJ})
 ⇒ *Configurations* of a TM capture its computation
- A language is Turing-recognizable if there is a TM M such that L(M) = L
 - \Rightarrow For all strings in L, M halts in state q_{ACC}
 - \Rightarrow For strings not in L, M may either halt in q_{REJ} or loop forever
- A language is decidable if there is a "decider" TM M such that L(M) = L
 - \Rightarrow For all strings in L, M halts in state q_{ACC}
 - \Rightarrow For all strings not in L, M halts in state q_{REJ}

Implementation and high level description of TMs

The Church of Turing

Revelations 101: The Church-Turing Thesis

- Varieties of TMs: Multi-tape, multi-headed TMs, Nondeterministic TMs (NTMs), enumerator TMs etc.
 All are equivalent to standard TM
- <u>Church-Turing Thesis (not a theorem!)</u>: Any formal definition of "algorithms" or "programs" is equivalent to Turing machines

To be or not to be decidable...

- Any problem can be cast as a language membership problem
 Does DFA D accept input w?
 - Equivalent to: Is <D,w> in A_{DFA} = {<D,w> | D is a DFA that accepts input w}?
- Decidable problems are those that can be solved by algorithms (decider TMs): A_{DFA}, A_{NFA}, A_{REX}, A_{empty-DFA}, A_{CFG}, A_{empty-CFG} etc.
- Many problems are undecidable
 A_{TM}: Turing-recognizable but not decidable (Proof by diagonalization)
- Can also use the concept of *reducibility* to show undecidability
- Some problems are not even recognizable

Reducibility and Unrecognizability

Reducibility and Unrecognizability

- To show a new problem A is undecidable, reduce A_{TM} (or some other undecidable problem) to A
 - Use a decider for A as a *subroutine* to decide the undecidable problem (and get a contradiction)
 - E.g. Halting problem = "Does a program halt for an input or go into an infinite loop?"
 - \Rightarrow Can show Halting problem is undecidable by reducing A_{TM} to $A_{H} = \{ \langle M, w \rangle | TM M \text{ halts on input } w \}$
 - \Rightarrow Similarly for $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- A is decidable iff A and A are both Turing-recognizable
 ⇒ Corollary: A_{TM} and A_H are not Turing-recognizable

The Chomsky Hierarchy of Languages

Increasing generality

Language	Regular	Context-Free	Decidable	Turing- Recognizable
Computational Models	DFA, NFA, RegExp	PDA, CFG	Deciders – TMs that halt for all inputs	TMs that may loop for strings not in language
Examples	(0-1)*11	$\{ 0^{n} \overline{1^{n} \mid n \geq 0} \},\$ $\{ ww^{R} \mid w \in \{0,1\}^{*} \}$	$ \{ 0^{n}1^{n}0^{n} \mid \\ n \ge 0 \}, \\ A_{DFA}, \\ A_{CFG} $	A _{TM} , A _H , E _{TM}

The Chomsky Hierarchy – Then & Now...

The Final Exam

R. Rao, CSE 322

On class website after class today

A CONTRACTOR

Solutions to the Final Exam

R. Rao, CSE 322

On class website on Tuesday

