The language A_{TM}

- Consider the language:
 - $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and M accepts } w \}$
 - \Rightarrow NOTE: $\langle A, B, ... \rangle$ is just a string encoding the objects A, B, ...
 - In particular, <M,w> is a string listing the components of TM M followed by the string w
 - Given input <M,w>, it should be easy to extract the info about M and to simulate M on w (try writing a TM to do this!)
- What can we say about A_{TM} ?

Is A_{TM} Turing-recognizable?

A_{TM} is Turing-recognizable

- A_{TM} is Turing-recognizable: Recognizer TM U for A_{TM} :
 - On input string $\langle M, w \rangle$: Simulate M on w. ACCEPT $\langle M, w \rangle$ if M halts & accepts w REJECT $\langle M, w \rangle$ if M halts & rejects (Loop (& thus reject $\langle M, w \rangle$) if M ends up looping). U accepts $\langle M, w \rangle$ iff M accepts w, i.e. $L(U) = A_{TM}$

R. Rao, CSE 322

Is A_{TM} decidable?

 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and M accepts } w \}$

- Let's assume A_{TM} is decidable and see where it leads us
- A_{TM} is decidable ⇒ there's a decider H, L(H) = A_{TM} H on <M,w> = ACC if M accepts w REJ if M rejects w (by halting in q_{REJ} or looping)
- Then, we can construct a new TM D as follows:
 On input <M>:
 - Extract M from <M>
 - Simulate H on $\langle M, \langle M \rangle \rangle$ (here, w = $\langle M \rangle$)
 - If H accepts <M,<M>>, then REJECT input <M>
 - If H rejects <M,<M>>, then ACCEPT input <M>

Is A_{TM} decidable?

New TM D works as follows:

On input <M>: Extract M from <M> Simulate H on <M,<M>> (here, w = <M>) If H accepts <M,<M>>, then REJECT input <M> If H rejects <M,<M>>, then ACCEPT input <M>

♦ What happens when D gets <D> as input?
 If D rejects <D> ⇒ H accepts <D,<D>> ⇒ D accepts <D>
 If D accepts <D> ⇒ H rejects <D,<D>> ⇒ D rejects <D>

Either way: Contradiction! D cannot exist \Rightarrow H cannot exist Therefore, A_{TM} is not a decidable language.

Undecidability Proof uses Diagonalization

D on $\langle M_i \rangle$ accepts if and only if M_i on $\langle M_i \rangle$ rejects. So, D on $\langle D \rangle$ will accept if and only if D on $\langle D \rangle$ rejects! A contradiction \Rightarrow H cannot exist!

Therefore, A_{TM} is not a decidable language.

R. Rao, CSE 322

One Last Concept: Reducibility

✦ How do we show a new problem B is undecidable?

- ◆ Idea: Show that a known undecidable problem (e.g., A_{TM}) is <u>reducible to</u> the new problem B
 ◇ What does this mean and how do we show this?
- ◆ Show that if B was decidable, then you can use the decider for B as a *subroutine* to decide A_{TM}
 ◇ Contradiction, therefore B must also be undecidable

The Halting Problem is Undecidable (Turing, 1936)

 ✦ Halting Problem: Does TM M halt on input w?
 ◇ Equivalent language: HALT = { <M,w> | TM M halts on input w} Need to show HALT is undecidable
 ◇ Use the fact that A_{TM} = {<M,w> | TM M accepts w} is known to be undecidable

The Halting Problem is Undecidable (cont.)

- Show A_{TM} is reducible to HALT (Theorem 5.1 in text)
 - ⇒ Suppose HALT is decidable ⇒ there's a decider M_{HALT} for HALT
 - \Rightarrow Then, we can use M_{HALT} to solve A_{TM}
 - \Rightarrow Define decider D_{TM} as:
 - On input <M,w>, first run M_{HALT} on <M,w>.
 - If M_{HALT} rejects, then REJ (this takes care of M looping on w)
 - If M_{HALT} accepts, then simulate M on w until M halts
 - If M accepts, then ACC input <M,w>; else REJ

Then, $L(D_{TM}) = A_{TM} \Rightarrow A_{TM}$ is decidable! Contradiction. Therefore, HALT is undecidable.

• E.g. 2: Show $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable

Last homework (#7) on class website today (due on Friday, last day of class)

Take-Home Final on website on Friday June 4 (due by 4:30pm Monday, June 7)

> No class this monday – UW holiday Enjoy the long weekend!