
1R. Rao, CSE 322

We know L = {0n1n0n | n ≥ 0} is not a CFL (pumping lemma)

Can we show L is decidable?
Construct a decider M such that L(M) = L
A decider is a TM that always halts (in qacc or qrej) and is
guaranteed not to go into an infinite loop for any input

Solving Problems with Turing Machines

000001111100000
_00001111100000
_0000X111100000
_0000X1111X0000
_X000X1111X0000
….

Idea: Mark off
matching 0s, 1s,
and 0s with Xs
(left end marked
with blank)

Input: 000001111100000

2R. Rao, CSE 322

Idea for a Decider for {0n1n0n | n ≥ 0}

General Idea: Match each 0 with a 1 and a 0 following the 1.
Implementation Level Description of a Decider for L:
On input w:
1. If first symbol = blank, ACCEPT
2. If first symbol = 1, REJECT
3. If first symbol = 0, Write a blank to mark left end of tape

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:
a. You see 0: Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

3R. Rao, CSE 322

State Diagram

Try running the decider on:
010, 001100, … ACCEPT
0, 000, 0100, … REJECT

q0 qskip0 qskip1 qgo-left

qat-leftqACCqREJ

0→_,R 1→X,R 0→X,L

_→R0→X,R

_→R

_→R1→R

X→R
0→R

X→R
1→R

X→L
0→L
1→L

X→R

What about 010010?

1→R
qREJ Note: Some

transitions to qREJ
(e.g., from qskip0)
are not shown to
avoid clutter

4R. Rao, CSE 322

Houston, we have a
problem…with our

Turing machine.

5R. Rao, CSE 322

What’s the problem?

The decider accepts incorrect strings:
010010, 010001100 ACCEPT!!!
Accepts (0n1n0n)*

Need to fix it…How??

q0 qskip0 qskip1 qgo-left

qat-leftqACCqREJ

0→_,R 1→X,R 0→X,L

_→R0→X,R

_→R

_→R1→R

X→R
0→R

X→R
1→R

X→L
0→L
1→L

X→R

1→R
qREJ

6R. Rao, CSE 322

Scan initially to make sure string is of the form 0*1*0*

On input w:
1. If first symbol = blank, ACCEPT
2. If first symbol = 1, REJECT
3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,

Write a blank to mark left end of tape
a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:
a. You see 0: Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

A Simple Fix (to the Decider)

Add this

7R. Rao, CSE 322

The Decider TM for L in all its glory

q0

qskip0 qskip1 qgo-left

qat-leftqACC

qREJ

0→_,R

1→X,R 0→X,L

_→R0→X,R

_→R

_→R

1→R
X→R
0→R X→R

1→R
X→L
0→L
1→L

X→R

q1
1→R q2

0→R q3

0→R 1→R 0→R

_→L
1→R

qREJ

qREW

New part tests
for 00*11*00*

0→L
1→L

_→R

1→R
qREJ

8R. Rao, CSE 322

Can we augment the power of
Turing machines with various

accessories?

9R. Rao, CSE 322

Varieties of TMs

What if we
allow

nondeterminism
?

What if we
allow multiple

tapes?

What if my
date doesn’t

show up
tonight?

10R. Rao, CSE 322

Various Types of TMs

Multi-Tape TMs: TM with k tapes and k heads
δ: Q × Γk → Q × Γk × {L,R}k

δ(qi, a1, …, ak) = (qj, b1, …, bk, L, R, …, L)

Nondeterministic TMs (NTMs)
δ: Q × Γ → Pow(Q × Γ× {L,R})
δ(qi, a) = {(q1, b, R), (q2, c, L), …, (qm, d, R)}

Enumerator TM for L: Prints all strings in L (in any order,
possibly with repetitions) and only the strings in L

Other types: TM with Two-way infinite tape, TM with
multiple heads on a single tape, 2D infinite tape TM,
Random Access Memory (RAM) TM, etc.

11R. Rao, CSE 322

Surprise!
All TMs are born equal…

Each of the preceding TMs is equivalent to the standard TM
They recognize the same set of languages (the Turing-
recognizable languages)

Proof idea: Simulate the “deviant” TM using a standard TM
Example 1: Multi-tape TM on a standard TM

Represent k tapes sequentially on 1 tape using separators #
Use new symbol a to denote a head currently on symbol a

0 1

b a h

3 2 2

≡ # 0 1 # b a h # 3 2 2 #

(See text for details)

12R. Rao, CSE 322

Example 2: Simulating Nondeterminism

Any nondeterministic TM N can be
simulated by a deterministic TM M

NTMs: δ: Q × Γ → Pow(Q × Γ× {L,R})
No ε transitions but can simulate them
by reading and writing same symbol
N accepts w iff there is at least 1 path in
N’s tree for w ending in qACC

General proof idea: Simulate each
branch sequentially

Proof idea 1: Use depth first search?
No, might go deep into an infinite branch
and never explore other branches!
Proof idea 2: Use breadth first search
Explore all branches at depth n before n+1

q0

(q1, b, R) (q2, c, L)

qREJ

qACC

This branch does
not halt

a
b

a a

13R. Rao, CSE 322

Simulating Nondeterminism: Details, Details

Use a 3-tape DTM M for breadth-
first traversal of N’s tree on w:

Tape 1 keeps the input string w
Tape 2 stores N’s tape during
simulation along 1 path (given by
tape 3) up to a particular depth,
starting with w
Tape 3 stores current path number
E.g. ε = root node q0
213 = path made up of 3rd child of

1st child of 2nd child of root

See text for more details

q0

(q1, b, R) (q2, c, L)

qREJ

qACC

Does
not halt

213

a a

14R. Rao, CSE 322

What about other types of computing machines?

Enumerator TMs (or Printer Machines)

TMs with 2-Way Infinite Tape

TMs with Multiple Read/Write Heads

TMs with 2-Dimensional Tape

TMs with Random Access Memory (RAM)

15R. Rao, CSE 322

The Church-Turing Thesis

Various definitions of “algorithms” were shown to be
equivalent in the 1930s
Church-Turing Thesis: “The intuitive notion of algorithms
equals Turing machine algorithms”

Turing machines serve as a precise formal model for the
intuitive notion of an algorithm

“Any computation on a digital computer is equivalent to
computation in a Turing machine”

Dude, that’s
pretty deep…

16R. Rao, CSE 322

Recap: Recognizable versus Decidable Languages

A language L is called Turing-Recognizable if there exists a
TM M such that L(M) = L

Note: M need not halt on all inputs but it should halt and
accept all and only those strings that are in L; it can reject
strings by either going to qrej or by looping forever

A TM is a decider if it halts on all inputs

A language L is decidable if there exists a decider D such
that L(D) = L

17R. Rao, CSE 322

Closure Properties of Decidable Languages

Decidable languages are closed under ∪, °, *, ∩, and
complement
Example: Closure under ∪
Need to show that union of 2 decidable L’s is also decidable
Let M1 be a decider for L1 and M2 a decider for L2
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

18R. Rao, CSE 322

Closure Properties

Consider the proof for closure under ∪
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

Will the same proof work for showing Turing-recognizable
languages are closed under ∪? Why/Why not?

Uh…I dunno.
Wait, will M1
always halt?!

M1 may never halt but
w may be in L2

19R. Rao, CSE 322

Closure Properties of Recognizable Languages

Turing recognizable languages are closed under ∪
A TM M for L1 ∪ L2:

On input w:
Simulate M1 and M2 alternatively on w step by step.

If either accepts, then ACCEPT w.
If both halt and reject w, then REJECT w.

L(M) = L1 ∪ L2
If either M1 or M2 accepts, then M accepts w (even if one of

them loops, M will accept and halt when the other accepts
and halts because M alternates between M1 and M2).
Otherwise, M rejects w by halting or by looping forever.

20R. Rao, CSE 322

Closure for Recognizable Languages

Turing-Recognizable languages are closed under ∪, °, *, and ∩
(but not complement! We will see this later)
Example: Closure under ∩
Let M1 be a TM for L1 and M2 a TM for L2 (both may loop)
A TM M for L1 ∩ L2:

On input w:
1. Simulate M1 on w. If M1 halts and accepts w, go to step 2. If

M1 halts and rejects w, then REJECT w. (If M1 loops, then M
will also loop and thus reject w)

2. Simulate M2 on w. If M2 halts and accepts, ACCEPT w. If M2
halts and rejects, then REJECT w. (If M2 loops, then M
will also loop and thus reject w)

M accepts w iff M1 accepts w AND M2 accepts w i.e. L(M) = L1∩L2

	Solving Problems with Turing Machines
	Idea for a Decider for {0n1n0n | n  0}
	State Diagram
	What’s the problem?
	
	The Decider TM for L in all its glory
	Varieties of TMs
	Various Types of TMs
	Surprise! �All TMs are born equal…
	Example 2: Simulating Nondeterminism
	Simulating Nondeterminism: Details, Details
	What about other types of computing machines?
	The Church-Turing Thesis
	Recap: Recognizable versus Decidable Languages
	Closure Properties of Decidable Languages
	Closure Properties
	Closure Properties of Recognizable Languages
	Closure for Recognizable Languages

