Solving Problems with Turing Machines

- We know $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not a CFL (pumping lemma)
- Can we show L is decidable?
\Rightarrow Construct a decider M such that $L(M)=L$
\Rightarrow A decider is a TM that always halts (in $\mathrm{q}_{\mathrm{acc}}$ or $\mathrm{q}_{\mathrm{rej}}$) and is guaranteed not to go into an infinite loop for any input Input: 000001111100000

000001111100000
Idea: Mark off matching 0s, 1 s , and 0s with Xs (left end marked with blank)
_00001111100000
_0000X111100000
_0000X1111X0000
_X000X1111X0000

Idea for a Decider for $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

- General Idea: Match each 0 with a 1 and a 0 following the 1 .
- Implementation Level Description of a Decider for L:

On input w:

1. If first symbol = blank, ACCEPT
2. If first symbol $=1$, REJECT
3. If first symbol $=0$, Write a blank to mark left end of tape
a. If current symbol is 0 or X , skip until it is 1 . REJECT if blank.
b. Write X over 1. Skip 1's/X's until you see 0. REJECT if blank.
c. Write X over 0 . Move back to left end of tape.
4. At left end: Skip X’s until:
a. You see 0 : Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

State Diagram

Note: Some transitions to $\mathrm{q}_{\text {REJ }}$ (e.g., from $\mathrm{q}_{\text {skip } 0}$) are not shown to avoid clutter

What's the problem?

\star The decider accepts incorrect strings:
\Rightarrow 010010, $010001100 \rightarrow$ ACCEPT!!!
\Rightarrow Accepts $\left(0^{n} 1^{n} 0^{n}\right)^{*}$

A Simple Fix (to the Decider)

- Scan initially to make sure string is of the form $0^{*} 1^{*} 0^{*}$

On input w:

1. If first symbol = blank, ACCEPT
2. If first symbol $=1$, REJECT
3. If first symbol $=0$: if w is not in $00^{*} 11^{*} 00^{*}$, REJECT; else, Write a blank to mark left end of tape
a. If current symbol is 0 or X , skip until it is 1 . REJECT if blank.
b. Write X over 1. Skip 1's/X's until you see 0 . REJECT if blank.
c. Write X over 0 . Move back to left end of tape.
4. At left end: Skip X's until:
a. You see 0 : Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

The Decider TM for L in all its glory

Can we augment the power of Turing machines with various accessories?

Varieties of TMs

Various Types of TMs

- Multi-Tape TMs: TM with k tapes and k heads

$$
\begin{aligned}
& \Rightarrow \delta: Q \times \Gamma^{\mathrm{k}} \rightarrow \mathrm{Q} \times \Gamma^{\mathrm{k}} \times\{\mathrm{L}, \mathrm{R}\}^{\mathrm{k}} \\
& \Rightarrow \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)=\left(\mathrm{q}_{\mathrm{j}}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}, \mathrm{~L}, \mathrm{R}, \ldots, \mathrm{~L}\right)
\end{aligned}
$$

- Nondeterministic TMs (NTMs)
$\Rightarrow \delta: Q \times \Gamma \rightarrow \operatorname{Pow}(\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$
$\Rightarrow \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{R}\right),\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{L}\right), \ldots,\left(\mathrm{q}_{\mathrm{m}}, \mathrm{d}, \mathrm{R}\right)\right\}$
- Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L
- Other types: TM with Two-way infinite tape, TM with multiple heads on a single tape, 2D infinite tape TM, Random Access Memory (RAM) TM, etc.

Surprise!
 All TMs are born equal...

\downarrow Each of the preceding TMs is equivalent to the standard TM \Rightarrow They recognize the same set of languages (the Turingrecognizable languages)
\downarrow Proof idea: Simulate the "deviant" TM using a standard TM
\uparrow Example 1: Multi-tape TM on a standard TM
\Rightarrow Represent k tapes sequentially on 1 tape using separators \#
\Rightarrow Use new symbol \underline{a} to denote a head currently on symbol a

(See text for details)

Example 2: Simulating Nondeterminism

\uparrow Any nondeterministic TM N can be simulated by a deterministic TM M
\Rightarrow NTMs: $\delta: \mathrm{Q} \times \Gamma \rightarrow \operatorname{Pow}(\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$
\Rightarrow No ε transitions but can simulate them by reading and writing same symbol
$\Rightarrow \mathrm{N}$ accepts w iff there is at least 1 path in N 's tree for w ending in $\mathrm{q}_{\mathrm{ACC}}$

- General proof idea: Simulate each branch sequentially
\Leftrightarrow Proof idea 1: Use depth first search? No, might go deep into an infinite branch and never explore other branches!
\Rightarrow Proof idea 2: Use breadth first search Explore all branches at depth n before $n+1$

Simulating Nondeterminism: Details, Details

* Use a 3-tape DTM M for breadthfirst traversal of N's tree on w:
\Rightarrow Tape 1 keeps the input string w
\Rightarrow Tape 2 stores N's tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w
\Rightarrow Tape 3 stores current path number E.g. $\varepsilon=$ root node q_{0}
$213=$ path made up of $3^{\text {rd }}$ child of $1^{\text {st }}$ child of $2^{\text {nd }}$ child of root
- See text for more details

What about other types of computing machines?

\downarrow Enumerator TMs (or Printer Machines)

- TMs with 2-Way Infinite Tape
- TMs with Multiple Read/Write Heads
\uparrow TMs with 2-Dimensional Tape
\uparrow TMs with Random Access Memory (RAM)

The Church-Turing Thesis

- Various definitions of "algorithms" were shown to be equivalent in the 1930s
- Church-Turing Thesis: "The intuitive notion of algorithms equals Turing machine algorithms"
\Rightarrow Turing machines serve as a precise formal model for the intuitive notion of an algorithm
- "Any computation on a digital computer is equivalent to computation in a Turing machine"

Recap: Recognizable versus Decidable Languages

\checkmark A language L is called Turing-Recognizable if there exists a TM M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}$
\Rightarrow Note: M need not halt on all inputs but it should halt and accept all and only those strings that are in L; it can reject strings by either going to $\mathrm{q}_{\mathrm{rej}}$ or by looping forever

- A TM is a decider if it halts on all inputs
\uparrow A language L is decidable if there exists a decider D such that $\mathrm{L}(\mathrm{D})=\mathrm{L}$

Closure Properties of Decidable Languages

\uparrow Decidable languages are closed under $\cup,^{\circ},{ }^{*}, \cap$, and complement
\downarrow Example: Closure under \cup
\downarrow Need to show that union of 2 decidable L's is also decidable
Let M1 be a decider for L1 and M2 a decider for L2
A decider M for L1 \cup L2:
On input w:

1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. $L(M)=L 1 \cup L 2$

Closure Properties

- Consider the proof for closure under \cup

A decider M for L1 $\cup \mathrm{L} 2$:
On input w:

1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w. M accepts w iff M1 accepts w OR M2 accepts w i.e. $\mathrm{L}(\mathrm{M})=\mathrm{L} 1 \cup \mathrm{~L} 2$

Will the same proof work for showing Turing-recognizable languages are closed under \cup ? Why/Why not?

M1 may never halt but
w may be in L2

Closure Properties of Recognizable Languages

- Turing recognizable languages are closed under \cup

A TM M for L1 $\cup \mathrm{L} 2$:
On input w:
Simulate M1 and M2 alternatively on w step by step. If either accepts, then ACCEPT w. If both halt and reject w, then REJECT w.
$\mathrm{L}(\mathrm{M})=\mathrm{L} 1 \cup \mathrm{~L} 2$
If either M1 or M2 accepts, then M accepts w (even if one of them loops, M will accept and halt when the other accepts and halts because M alternates between M1 and M2). Otherwise, M rejects w by halting or by looping forever.

Closure for Recognizable Languages

\star Turing-Recognizable languages are closed under $\cup,^{\circ}$, *, and \cap (but not complement! We will see this later)
\checkmark Example: Closure under \cap
Let M1 be a TM for L1 and M2 a TM for L2 (both may loop) A TM M for $\mathrm{L} 1 \cap \mathrm{~L} 2$:

On input w:

1. Simulate M1 on w. If M1 halts and accepts w, go to step 2. If M1 halts and rejects w, then REJECT w. (If M1 loops, then M will also loop and thus reject w)
2. Simulate M2 on w. If M2 halts and accepts, ACCEPT w. If M2 halts and rejects, then REJECT w. (If M2 loops, then M will also loop and thus reject w)
M accepts w iff M1 accepts w AND M2 accepts w i.e. L(M) = L1 $\cap \mathrm{L} 2$
