

Pumping Lemma for CFLs

- Intuition: If L is CF, then some CFG G produces strings in L
 - \Rightarrow If some string in L is very long, it will have a very tall parse tree
 - ◇ If a parse tree is taller than the number of distinct variables in G, then *some variable* A *repeats* ⇒ A will have at least two sub-trees
 - We can pump up the original string by replacing A's smaller subtree with larger, and pump down by replacing larger with smaller
- Pumping Lemma for CFLs in all its glory:
 - If L is a CFL, then there is a number p (the "pumping length") such that for all strings *s* in L such that |*s*| ≥ p, there exist *u*, *v*, *x*, *y*, and *z* such that *s* = *uvxyz* and:
 - *1.* $uv^i xy^i z \in L$ for all $i \ge 0$, and
 - 2. $|vy| \ge 1$, and
 - 3. $|vxy| \leq p$.

- Can use the pumping lemma to show a language L is *not* context-free
 - ⇒ <u>5 steps for a proof by contradiction</u>:
 - 1. Assume L is a CFL.
 - 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
 - 3. Choose cleverly an *s* in L of length at least p, such that
 - 4. For *all possible ways* of decomposing *s* into *uvxyz*, where $|vy| \ge 1$ and $|vxy| \le p$,
 - 5. Choose an $i \ge 0$ such that $uv^i xy^i z$ is not in L.

Example 1

- Show that $L = \{0^n 1^n 0^n \mid n \ge 0\}$ is not a CFL
 - 1. Assume L is a CFL.
 - 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
 - 3. Let $s = 0^{p}1^{p}0^{p}$ (note that |s| > p)
 - 4. For all possible ways of decomposing $s = 0^{p}1^{p}0^{p}$ into uvxyz, where $|vy| \ge 1$ and $|vxy| \le p$,
 - 5. We need i ≥ 0 such that uvⁱxyⁱz is not in L: Case 1: Both v and y contain only 0s or only 1s
 ⇒ Then uv²xy²z contains unequal no. of 0s, 1s, and 0s.

Case 2: v or y contain both 0 and 1

⇒ Then uv^2xy^2z is not of the form 0*1*0*. In both cases, uv^2xy^2z is not in L, contradicting pumping lemma. Therefore L cannot be a CFL.

Example 2

- Show $L = \{0^n | n \text{ is a prime number}\}$ is not a CFL
 - 1. Assume L is a CFL.
 - 2. Let p be the pumping length for L given by the pumping lemma for CFLs.
 - 3. Let $s = 0^n$ where n is a prime $\ge p$
 - 4. Consider all possible ways of decomposing s into uvxyz, where $|vy| \ge 1$ and $|vxy| \le p$.

Then, $vy = 0^r$ and $uxz = 0^q$ where r + q = n and $r \ge 1$

5. We need an $i \ge 0$ such that $uv^i xy^i z = 0^{ir+q}$ is not in L. (i = 0 won't work because q could be prime: e.g. 2 + 17 = 19) Choose i = (q + 2 + 2r). Then, $ir + q = qr + 2r + 2r^2 + q = q(r+1) + 2r(r+1) = (q+2r)(r+1) = not$ prime (since $r \ge 1$).

So, 0^{ir+q} is not in L \Rightarrow contradicts pumping lemma. L is not a CFL.

Closure properties of CFLs

 You showed in homework that CFLs are closed under union, concatenation and star.

- How about intersection?
- ✦ How about complement?

CFLs are <u>not closed</u> under intersection

- ⇒ **Proof**: $L_1 = \{0^n 1^n 0^m | n, m \ge 0\}$ and $L_2 = \{0^m 1^n 0^n | n, m \ge 0\}$ are both CFLs but $L_1 \cap L_2 = \{0^n 1^n 0^n | n \ge 0\}$ is not a CFL.
- ♦ CFLs are <u>not closed</u> under complement

Proof by contradiction:

Suppose CFLs are closed under complement.

Then, for L_1, L_2 above, $\overline{L}_1 \cup \overline{L}_2$ must be a CFL (since CFLs are closed under \cup - see this week's homework).

But, $\overline{L}_1 \cup \overline{L}_2 = L_1 \cap L_2$ (by de Morgan's law).

 $L_1 \cap L_2 = \{0^n 1^n 0^n \mid n \ge 0\}$ is not a CFL \Rightarrow contradiction.

Therefore CFLs are not closed under complement.

Can we make PDAs more powerful?

Enter...the Turing Machine

Turing Machines

Just like a DFA except:

- You have an infinite "tape" memory (or scratchpad) on which you receive your input and on which you can do your calculations
- ◇ You can <u>read</u> one symbol at a time from a cell on the tape, <u>write</u> one symbol, then <u>move</u> the read/write pointer (head) left (L) or right (R)

Who was Turing?

- Alan Turing (1912-1954): one of the most brilliant mathematicians of the 20th century (one of the "founding fathers" of computing)
- Click on "Theory Hall of Fame" link on class web under "Lectures"
- Introduced the Turing machine as a formal model of what it means to compute and solve a problem (i.e. an "algorithm")
 - Paper: On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. 42 (1936).

How do Turing Machines compute?

δ(current state, symbol under the head) = (next state, symbol to write over current symbol, direction of head movement)

♦ Diagram shows: $\delta(q_1, 1) = (q_{rej}, 0, L)$ (R = right, L = left)

★ In terms of "Configurations": $110q_110 \Rightarrow 11q_{rej}000$ R. Rao, CSE 322

Next Time: Turing-Recognizable versus Decidable Languages

How does a TM accept a string? How can a TM reject a string? What is a decider TM?