
1R. Rao, CSE 322

Pumping Lemma for CFLs

Intuition: If L is CF, then some CFG G produces strings in L
If some string in L is very long, it will have a very tall parse tree
If a parse tree is taller than the number of distinct variables in G,
then some variable A repeats ⇒ A will have at least two sub-trees
We can pump up the original string by replacing A’s smaller sub-
tree with larger, and pump down by replacing larger with smaller

Pumping Lemma for CFLs in all its glory:
If L is a CFL, then there is a number p (the “pumping length”) such that
for all strings s in L such that |s| ≥ p, there exist u, v, x, y, and z such that
s = uvxyz and:

1. uvixyiz ∈ L for all i ≥ 0, and
2. |vy| ≥ 1, and
3. |vxy| ≤ p.

Here we
go again!s

v y

2R. Rao, CSE 322

Why is the PL useful?

Can use the pumping lemma to show a language L is not
context-free

5 steps for a proof by contradiction:
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping

lemma for CFLs.
3. Choose cleverly an s in L of length at least p, such that
4. For all possible ways of decomposing s into uvxyz,

where |vy| ≥ 1 and |vxy| ≤ p,
5. Choose an i ≥ 0 such that uvixyiz is not in L.

Yawn…yes,
why indeed?

3R. Rao, CSE 322

Example 1

Show that L = {0n1n0n | n ≥ 0} is not a CFL
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping

lemma for CFLs.
3. Let s = 0p1p0p (note that |s| > p)
4. For all possible ways of decomposing s = 0p1p0p into uvxyz,

where |vy| ≥ 1 and |vxy| ≤ p,
5. We need i ≥ 0 such that uvixyiz is not in L:

Case 1: Both v and y contain only 0s or only 1s
Then uv2xy2z contains unequal no. of 0s, 1s, and 0s.

Case 2: v or y contain both 0 and 1
Then uv2xy2z is not of the form 0*1*0*.

In both cases, uv2xy2z is not in L, contradicting pumping lemma.
Therefore L cannot be a CFL.

Oh boy…
Jolly good

4R. Rao, CSE 322

Example 2

Show L = {0n | n is a prime number} is not a CFL
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping

lemma for CFLs.
3. Let s = 0n where n is a prime ≥ p
4. Consider all possible ways of decomposing s into uvxyz, where

|vy| ≥ 1 and |vxy| ≤ p.
Then, vy = 0r and uxz = 0q where r + q = n and r ≥ 1

5. We need an i ≥ 0 such that uvixyiz = 0ir+q is not in L.
(i = 0 won’t work because q could be prime: e.g. 2 + 17 = 19)
Choose i = (q + 2 + 2r). Then, ir + q = qr + 2r +2r2+q =
q(r+1)+2r(r+1) = (q+2r)(r+1) = not prime (since r ≥ 1).

So, 0ir+q is not in L ⇒ contradicts pumping lemma. L is not a CFL.

Prime time,
baby!

5R. Rao, CSE 322

Closure properties of CFLs

You showed in homework that CFLs are closed under union,
concatenation and star.

How about intersection?

How about complement?

6R. Rao, CSE 322

Two surprising results about CFLs

CFLs are not closed under intersection
Proof: L1 = {0n1n0m | n, m ≥ 0} and L2 = {0m1n0n | n, m ≥ 0}
are both CFLs but L1 ∩L2 = {0n1n0n | n ≥ 0} is not a CFL.

CFLs are not closed under complement
Proof by contradiction:
Suppose CFLs are closed under complement.

Then, for L1, L2 above, L1 ∪ L2 must be a CFL (since CFLs are
closed under ∪ - see this week’s homework).

But, L1 ∪ L2 = L1 ∩L2 (by de Morgan’s law).
L1 ∩L2 = {0n1n0n | n ≥ 0} is not a CFL ⇒ contradiction.
Therefore CFLs are not closed under complement.

7R. Rao, CSE 322

Can we make PDAs more powerful?

PDA = NFA +

What if we allow arbitrary
reads/writes to the stack instead
of only push and pop?

8R. Rao, CSE 322

Enter…the Turing Machine

9R. Rao, CSE 322

Turing Machines

Just like a DFA except:
You have an infinite “tape” memory (or scratchpad) on which you
receive your input and on which you can do your calculations
You can read one symbol at a time from a cell on the tape, write one
symbol, then move the read/write pointer (head) left (L) or right (R)

Blank part of tape

10R. Rao, CSE 322

Who was Turing?

Alan Turing (1912-1954): one of the
most brilliant mathematicians of the
20th century (one of the “founding
fathers” of computing)

Click on “Theory Hall of Fame” link
on class web under “Lectures”

Introduced the Turing machine as a
formal model of what it means to
compute and solve a problem (i.e. an
“algorithm”)

Paper: On computable numbers,
with an application to the
Entscheidungsproblem, Proc.
London Math. Soc. 42 (1936).

11R. Rao, CSE 322

How do Turing Machines compute?

δ(current state, symbol under the head) = (next state, symbol
to write over current symbol, direction of head movement)

Diagram shows: δ(q1,1) = (qrej, 0, L) (R = right, L = left)

In terms of “Configurations”: 110q110 ⇒ 11qrej000

12R. Rao, CSE 322

Next Time: Turing-Recognizable versus
Decidable Languages

How does a TM accept a string?

How can a TM reject a string?

What is a decider TM?

	Pumping Lemma for CFLs
	Why is the PL useful?
	Example 1
	Example 2
	Closure properties of CFLs
	Two surprising results about CFLs
	Can we make PDAs more powerful?
	Turing Machines
	Who was Turing?
	How do Turing Machines compute?
	Next Time: Turing-Recognizable versus Decidable Languages

