
1R. Rao, CSE 322

Pushdown Automata (PDA)

Main Idea: Add a stack to an NFA
Stack provides potentially unlimited memory to an otherwise
finite memory machine (finite memory = finite no. of states)

PDA = NFA +

Stack is LIFO (“Last In, First Out”)
Two operations:

“Push” symbol onto top of stack
“Pop” symbol from top of stack

2R. Rao, CSE 322

6 Components of a PDA = (Q, Σ, Γ, δ, q0, F)

Q = set of states

Σ = input alphabet

Γ = stack alphabet

q0 = start state

F ⊆ Q = set of accept states

Transition function δ: Q × Σε × Γε → Pow(Q × Γε)
(current state, next input symbol, popped symbol) →
{set of (next state, pushed symbol)}
Input/popped/pushed symbol can be ε

New and different!

3R. Rao, CSE 322

When does a PDA accept a string?

A PDA M accepts string w = w1 w2…wm if and only if there
exists at least one accepting computational path i.e. a
sequence of states r0, r1, …, rm and strings s0, s1, …, sm
(denoting stack contents) such that:

1. r0 = q0 and s0 = ε (M starts in q0 with empty stack)
2. (ri+1, b) ∈ δ(ri, wi+1, a) for some a, b ∈ Γε (States follow

transition rules)
3. si = at and si+1 = bt for some t ∈ Γ*

(M pops “a” from top of stack and pushes “b” onto stack)
4. rm∈ F (Last state in the sequence is an accept state)

4R. Rao, CSE 322

On-Board Examples
PDA for L = {w#wR| w ∈ {0,1}*} (# acts as a “delimiter”)

E.g. 0#0, 1#1, 10#01, 01#10, 1011#1101 ∈ L
L is a CFL (what is a CFG for it?)
Recognizing L using a PDA:

Push each symbol of w onto stack
On reaching # (middle of the input), pop the stack – this
yields symbols in wR – and compare to rest of input

PDA for L1 = {wwR| w ∈ {0,1}*}
Set of all even length palindromes over {0,1}

Recognizing L1 using a PDA:
Problem: Don’t know the middle of input string
Solution: Use nondeterminism (ε-transition) to guess!
See lecture notes on class website

5R. Rao, CSE 322

Are context free grammars equivalent to PDAs?
(i.e. Are the languages generated by CFGs the same as the

languages recognized by PDAs?)

I dunno – what do
you think?

6R. Rao, CSE 322

From CFGs to PDAs

L is context free ⇒ there exists a PDA that accepts it

Proof idea:
PDA “simulates” context-free grammar (CFG) for L by:

1. Nondeterministically generating strings (in parallel)
using rules of the CFG starting from the start symbol,

2. Using the stack to store each intermediate string,
3. Checking the generated part of each string with the

input string in an “on-line” manner, and
4. Going to the accept state if and only if all characters of

the generated string match the input string.

7R. Rao, CSE 322

From CFGs to PDAs: Details

L is a CFL ⇒ L = L(M) for some PDA M
Proof Summary:

L is a CFL means L = L(G) for some CFG G = (V, Σ, R, S)
Construct PDA M = (Q, Σ, Γ, δ, q0, {qacc})
M has only 4 main states (plus a few more for pushing strings)
Q = {q0, q1, q2, qacc} ∪ E where E are states used in 2 below
δ has 4 components:

1. Init. Stack: δ(q0, ε, ε) = {(q1, $)} and δ(q1, ε, ε) = {(q2, S)}
2. Push & generate strings: δ(q2, ε, A) = {(q2, w)} for A→w in R
3. Pop & match to input: δ(q2, a,a) = {(q2, ε)} for all a in Σ
4. Accept if stack empty: δ(q2, ε, $) = {(qacc, ε)}

Can prove by induction: w ∈ L iff w ∈ L(M)

8R. Rao, CSE 322

Relationship to Compilers and Parsing

The PDA in the previous proof is doing what a
compiler does to your Java/C program: parsing an
input string based on a grammar G

This type of parsing is called “top-down” or LL
parsing (Left to right parse, Leftmost derivation)

For details and an example implementation, see:
http://en.wikipedia.org/wiki/LL_parser
(they even use $ to represent their end of stack!)

http://en.wikipedia.org/wiki/LL_parser

9R. Rao, CSE 322

Can PDAs be
converted to CFGs??

10R. Rao, CSE 322

From PDAs to CFGs

L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

Proof Summary: Simulate M’s computation using a CFG
First, simplify M: 1. Only 1 accept state, 2. M empties
stack before accepting, 3. Each transition either Push or
Pop, not both or neither.
Let this M = (Q, Σ, Γ, δ, q0, {qacc})
Construct grammar G = (V, Σ, R, S)

11R. Rao, CSE 322

From PDAs to CFGs

Construct grammar G = (V, Σ, R, S)
Basic Idea: Define variables Apq for simulating M
Apq generates all strings w such that w takes M

from state p with empty stack to state q with
empty stack

Then, Aq0qacc generates all strings w accepted by M

12R. Rao, CSE 322

Review: From PDAs to CFGs (cont.)

L = L(M) for some PDA M ⇒ L = L(G) for some CFG G

Proof (cont.)
Construct grammar G = (V, Σ, R, S) where
V = {Apq | p, q ∈ Q)
S = Aq0qacc

R = {Apq→ aArsb | p r s q}
∪ {Apq→ Apr Arq | p, q, r ∈ Q}
∪ {Aqq→ ε | q ∈ Q}

See textbook for details and proof: w ∈ L(M) iff w ∈ L(G)
Try to get G from M where L(M) = {0n1n | n ≥ 1}

a, ε → c b, c → εArs

13R. Rao, CSE 322

Next class: Return of the
Pumping Lemma

(bigger and better)

	Pushdown Automata (PDA)
	6 Components of a PDA = (Q, , , , q0, F)
	When does a PDA accept a string?
	On-Board Examples
	Are context free grammars equivalent to PDAs?�(i.e. Are the languages generated by CFGs the same as the languages recognized b
	From CFGs to PDAs
	From CFGs to PDAs: Details
	Relationship to Compilers and Parsing
	From PDAs to CFGs
	From PDAs to CFGs
	Review: From PDAs to CFGs (cont.)

