Formal Statement of the Pumping Lemma

- Pumping Lemma: If L is regular, then $\exists \mathrm{p}$ such that $\forall s$ in L with $|s| \geq \mathrm{p}, \exists x, y, z$ with $s=x y z$ and:

1. $|y| \geq 1$, and
2. $|x y| \leq p$, and
3. $x y^{i} z \in \mathrm{~L} \forall i \geq 0$

- Proof on board last time...(also in the textbook)
- Proved in 1961 by Bar-Hillel, Peries and Shamir

Pumping Lemma in Plain English

\star Let L be a regular language and let $\mathrm{p}=$ "pumping length" = no. of states of a DFA accepting L

Then, any string s in L of length $\geq \mathrm{p}$ can be expressed as $s=$ xyz where:
$\Rightarrow y$ is not empty (y is the cycle)
$\Rightarrow|x y| \leq \mathrm{p}$ (cycle occurs within p state transitions), and
\Rightarrow any "pumped" string $x y^{i} z$ is also in L for all $i \geq 0$ (go through the cycle 0 or more times)

Using The Pumping Lemma

- In-Class Examples: Using the pumping lemma to show a language L is not regular
$\Rightarrow 5$ steps for a proof by contradiction:

1. Assume L is regular.
2. Let p be the pumping length given by the pumping lemma.
3. Choose cleverly an s in L of length at least p, such that
4. For all ways of decomposing s into $x y z$, where $|x y| \leq \mathrm{p}$ and y is not null,
5. There is an $i \geq 0$ such that $x y^{i} z$ is not in L.

Proving non-regularity as a Two-Person game

- An alternate view: Think of it as a game between you and an opponent (JS):

1. You: Assume L is regular
2. JS: Chooses some value p
3. You: Choose cleverly an s in L of length $\geq p$
4. JS: Breaks s into some $x y z$, where $|x y| \leq p$ and $|y| \geq 1$,
5. You: Need to choose an $i \geq 0$ such that $x y^{i} z$ is not in L (in order to win (the prize of non-regularity)!
(Note: Your i should work for all possible $x y z$ that JS chooses, given your s)

Proving Non-Regularity using the Pumping Lemma

- Examples: Show the following are not regular
$\Rightarrow L_{1}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ over the alphabet $\{0,1\}$
$\Rightarrow L_{2}=\left\{\mathrm{ww} \mid \mathrm{w}\right.$ in $\left.\{0,1\}^{*}\right\}$
\Leftrightarrow PRIMES $=\left\{0^{n} \mid \mathrm{n}\right.$ is prime $\}$ over the alphabet $\{0\}$
$\Rightarrow L_{3}=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s$\}$ over the alphabet $\{0,1\}$
\Rightarrow DISTINCT $=\left\{x_{1} \# x_{2} \# \ldots \# x_{n} \mid x_{i}\right.$ in 0^{*} and $x_{i} \neq x_{j}$ for $\left.i \neq j\right\}$
(last two can be proved using closure properties of regular languages)

If $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not Regular, what is it?

Enter...the world of Grammars (after midterm)

CSE 322: Midterm Review

- Basic Concepts (Chapter 0)
\Rightarrow Sets
- Notation and Definitions
- $A=\{x \mid$ rule about $x\}, x \in A, A \subseteq B, A=B$
- \exists ("there exists"), \forall ("for all")
- Finite and Infinite Sets
- Set of natural numbers N, integers Z, reals R etc.
- Empty set \varnothing
- Set operations: Know the definitions for proofs
- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Complement $\overline{\mathrm{A}}=\{\mathrm{x} \mid \mathrm{x} \notin \mathrm{A}\}$

Basic Concepts (cont.)

- Set operations (cont.)
\Rightarrow Power set of $\mathrm{A}=\operatorname{Pow}(\mathrm{A})$ or $2^{\mathrm{A}}=$ set of all subsets of A
- E.g. $\mathrm{A}=\{0,1\} \rightarrow 2^{\mathrm{A}}=\{\varnothing,\{0\}$, $\{1\},\{0,1\}\}$
\Rightarrow Cartesian Product $\mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}\}$
- Functions:
\Rightarrow f: Domain \rightarrow Range
- $\operatorname{Add}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y} \rightarrow$ Add: $\mathrm{Z} \times \mathrm{Z} \rightarrow \mathrm{Z}$
\Rightarrow Definitions of 1-1 and onto (bijection if both)

Strings

- Alphabet $\sum=$ finite set of symbols, e.g. $\Sigma=\{0,1\}$
- String $w=$ finite sequence of symbols $\in \Sigma$
$\Rightarrow \mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{~W}_{\mathrm{n}}$
- String properties: Know the definitions
\Rightarrow Length of $\mathrm{w}=|\mathrm{w}| \quad\left(|\mathrm{w}|=\mathrm{n}\right.$ if $\left.\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}\right)$
\Rightarrow Empty string $=\varepsilon \quad$ (length of $\varepsilon=0$)
\Rightarrow Substring of w
\Leftrightarrow Reverse of $w=w^{R}=w_{n} w_{n-1} \cdots w_{1}$
\Rightarrow Concatenation of strings x and y (append y to x)
$\Rightarrow y^{k}=$ concatenate y to itself to get string of $k y$'s
\Rightarrow Lexicographical order $=$ order based on length and dictionary order within equal length

Languages and Proof Techniques

- Language $\mathrm{L}=$ set of strings over an alphabet (i.e. $\mathrm{L} \subseteq \sum^{*}$)
\Rightarrow E.g. $L=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ over $\sum=\{0,1\}$
\Rightarrow E.g. $L=\{p \mid p$ is a syntactically correct $\mathrm{C}++$ program $\}$ over $\sum=$ ASCII characters
- Proof Techniques: Look at lecture slides, handouts, and notes

1. Proof by counterexample
2. Proof by contradiction
3. Proof of set equalities $(\mathrm{A}=\mathrm{B})$
4. Proof of "iff" ($\mathrm{X} \Leftrightarrow \mathrm{Y}$) statements (prove both $\mathrm{X} \Rightarrow \mathrm{Y}$ and $\mathrm{X} \Leftarrow \mathrm{Y}$)
5. Proof by construction
6. Proof by induction
7. Pigeonhole principle
8. Dovetailing to prove a set is countably infinite E.g. Z or $\mathrm{N} \times \mathrm{N}$
9. Diagonalization to prove a set is uncountable E.g. 2^{N} or Reals

Chapter 1 Review: Languages and Machines

Languages and Machines (Chapter 1)

- Language $=$ set of strings over an alphabet
\Rightarrow Empty language = language with no strings $=\varnothing$
\Rightarrow Language containing only empty string $=\{\varepsilon\}$
- DFAs
\Rightarrow Formal definition $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$
\Rightarrow Set of states Q , alphabet \sum, start state q_{0}, accept ("final") states F , transition function $\delta: \mathrm{Q} \times \sum \rightarrow \mathrm{Q}$
$\Rightarrow M$ recognizes language $L(M)=\{w \mid M$ accepts $w\}$
\Rightarrow In class examples:
E.g. DFA for $L(M)=\{w \mid w$ ends in 0$\}$
E.g. DFA for $L(M)=\{w \mid w$ does not contain 00$\}$
E.g. DFA for $L(M)=\{w \mid w$ contains an even \# of 0 's $\}$

Try: DFA for $L(M)=\{w \mid w$ contains an even \# of 0 's and an odd number of 1's $\}$

Languages and Machines (cont.)

- Regular Language = language recognized by a DFA
- Regular operations: Union \cup, Concatenation \circ and star *
\Rightarrow Know the definitions of $\mathrm{A} \cup \mathrm{B}, \mathrm{A} \circ \mathrm{B}$ and A^{*}
$\Rightarrow \sum=\{0,1\} \rightarrow \sum^{*}=\{\varepsilon, 0,1,00,01, \ldots\}$
- Regular languages are closed under the regular operations
\Rightarrow Means: If A and B are regular languages, we can show $A \cup B$, $\mathrm{A} \circ \mathrm{B}$ and A^{*} (and also B^{*}) are regular languages
\Rightarrow Cartesian product construction for showing $A \cup B$ is regular by simulating DFAs for A and B in parallel
- Other related operations: $\mathrm{A} \cap \mathrm{B}$ and complement $\overline{\mathrm{A}}$ \Rightarrow Are regular languages closed under these operations?

NFAs, Regular expressions, and GNFAs

- NFAs vs DFAs
\Rightarrow DFA: $\delta($ state,symbol $)=$ next state
\Rightarrow NFA: $\delta($ state,symbol or $\varepsilon)=$ set of next states
- Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, ε-edges
\Rightarrow Definition of: NFA N accepts a string $w \in \sum^{*}$
\Rightarrow Definition of: NFA N recognizes a language $\mathrm{L}(\mathrm{N}) \subseteq \sum^{*}$
\Rightarrow E.g. NFA for $L=\left\{w \mid w=x 1 a, x \in \sum^{*}\right.$ and $\left.a \in \sum\right\}$
- Regular expressions: Base cases $\varepsilon, \varnothing, \mathrm{a} \in \Sigma$, and R1 \cup R2, R1${ }^{\circ}$ R2 or R1*
- GNFAs = NFAs with edges labeled by regular expressions \Rightarrow Used for converting NFAs/DFAs to regular expressions

Main Results and Proofs

\star L is a Regular Language iff
$\Rightarrow \mathrm{L}$ is recognized by a DFA iff
$\Rightarrow L$ is recognized by an NFA iff
\Rightarrow L is recognized by a GNFA iff
\Rightarrow L is described by a Regular Expression

- Proofs:
\Rightarrow NFA \rightarrow DFA: subset construction (1 DFA state=subset of NFA states)
\Rightarrow DFA \rightarrow GNFA \rightarrow Reg Exp: Repeat two steps:

1. Collapse two parallel edges to one edge labeled $(a \cup b)$, and
2. Replace edges through a state with a loop with one edge labeled (ab*c)
\Rightarrow Reg Exp \rightarrow NFA: combine NFAs for base cases with ε-transitions

Other Results

\uparrow Using NFAs to show that Regular Languages are closed under:
\Rightarrow Regular operations \cup, o and *

- Are Regular Languages closed under:
\Rightarrow intersection?
\Rightarrow complement?
- Are there other operations that regular languages are closed under?

Other Results

- Are Regular languages closed under:
\leftrightarrows reversal?
\leftrightarrows subset (\subseteq) ?
\Rightarrow superset (\supseteq) ?
\Rightarrow Prefix?
$\operatorname{Prefix}(\mathrm{L})=\left\{\mathrm{w} \mid \mathrm{w} \in \Sigma^{*}\right.$ and $\mathrm{wx} \in \mathrm{L}$ for some $\left.\mathrm{x} \in \Sigma^{*}\right\}$
\Rightarrow NoExtend?
NoExtend(L) $=\left\{\mathrm{w} \mid \mathrm{w} \in \mathrm{L}\right.$ but $\mathrm{wx} \notin \mathrm{L}$ for all $\mathrm{x} \in \Sigma^{*}$ - $\left.\{\varepsilon\}\right\}$

Pumping Lemma

\uparrow Pumping lemma in plain English (sort of): If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length $\geq \mathrm{p}$ can be expressed as $s=x y z$ where y is not null (y is the loop in the DFA), $|x y| \leq \mathrm{p}$ (loop occurs within p state transitions), and any "pumped" string $x y^{i} z$ is in L for all $i \geq 0$ (go through the loop 0 or more times).
\rightarrow Pumping lemma in plain Logic:
L regular $\Rightarrow \exists$ p s.t. $\left(\forall \mathrm{s} \in \mathrm{L}\right.$ s.t. $|\mathrm{s}| \geq \mathrm{p}\left(\exists \mathrm{x}, \mathrm{y}, \mathrm{z} \in \sum^{*}\right.$ s.t. $(\mathrm{s}=\mathrm{xyz})$ and $(|y| \geq 1)$ and $(|x y| \leq p)$ and $\left.\left(\forall i \geq 0, x y^{i} z \in L\right)\right)$)
\uparrow Is the other direction \Leftarrow also true?
No! See Problem 1.54 for a counterexample

Proving Non-Regularity using the Pumping Lemma

- Proof by contradiction to show L is not regular

1. Assume L is regular. Then L must satisfy the P. Lemma.
2. Let p be the "pumping length"
3. Choose a long enough string $s \in L$ such that $|s| \geq p$
4. Let x, y, z be strings such that $s=x y z,|y| \geq 1$, and $|x y| \leq p$
5. Pick an $\mathrm{i} \geq 0$ such that $\mathrm{xy}^{\mathrm{i}} \mathrm{z} \notin \mathrm{L}$ (for all possible $\mathrm{x}, \mathrm{y}, \mathrm{z}$ as in 4) This contradicts the P . lemma. Therefore, L is not regular

- Examples: $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$, $\left\{\mathrm{ww} \mid \mathrm{w} \in \Sigma^{*}\right\}$, $\left\{0^{\mathrm{m}} \mid \mathrm{m}\right.$ prime $\}$, SUB $=\{x=y-z \mid x, y, z$ are binary numbers and x is diff of y and $z\}$
- Can sometimes also use closure under \cap (and/or complement) \Rightarrow E.g. If $L \cap B=L_{1}$ where B is regular and L_{1} is not regular, then L is also not regular (if L was regular, L_{1} would be regular)

Some Applications of Regular Languages

- Pattern matching and searching:
\Rightarrow E.g. In Unix:
- ls *.c
- cp /myfriends/games/*.* /mydir/
- grep 'Spock' *trek.txt
- Compilers:
\Leftrightarrow id ::= letter (letter | digit)*
\Rightarrow int ::= digit digit*
\Rightarrow float : := d d*. $\mathrm{d}^{*}\left(\varepsilon \mid E \mathrm{~d} \mathrm{~d}^{*}\right)$
\Rightarrow The symbol | stands for "or" (= union)

Good luck on the midterm!

- You can bring one 8 1/2" x 11" review sheet (double-sided ok)
\star The questions sheet will have space for answers. We will also bring extra blank sheets for those not so fond of brevity.

Don't sweat it!

- Go through the homeworks, lecture slides, and examples in the text (Chapters 0 and 1 only)
- Do the practice midterm on the website and avoid being surprised!

Da Pumpin’ Lemma

Any regulah language L has a magic numba p
And any long-enuff word s in L has da followin' propa'ty:
Amongst its first p symbols issa segment u can find
Whoz repetition or omission leaves s amongst its kind.
So if ya find a lango L which fails dis acid test,
And some long word ya pump becomes distinct from all da rest, By contradixion ya have shown L is not
A regular homie, resilient to da pumpin' u've wrought.
But if, on da otha' hand, s stays within its L, Then eitha L is regulah, or else ya chose not well.
For s is $x y z$, where y is not empty, And y must come befo' da $p+1^{\text {th }}$ symbol u see.

