
1R. Rao, CSE 322

Formal Statement of the Pumping Lemma

Pumping Lemma: If L is regular, then ∃ p such
that ∀ s in L with |s| ≥ p, ∃ x, y, z with s = xyz
and:
1. |y| ≥ 1, and
2. |xy| ≤ p, and
3. xyiz ∈ L ∀ i ≥ 0

Proof on board last time…(also in the textbook)

Proved in 1961 by Bar-Hillel, Peries and Shamir

Σ*

2R. Rao, CSE 322

Pumping Lemma in Plain English

Let L be a regular language and let p = “pumping length” =
no. of states of a DFA accepting L

Then, any string s in L of length ≥ p can be expressed as s =
xyz where:

y is not empty (y is the cycle)
|xy| ≤ p (cycle occurs within p state transitions), and
any “pumped” string xyiz is also in L for all i ≥ 0 (go
through the cycle 0 or more times)

I liked the formal statement better…

That’s
more

like it…

3R. Rao, CSE 322

Using The Pumping Lemma

In-Class Examples: Using the pumping lemma to show a
language L is not regular

5 steps for a proof by contradiction:
1. Assume L is regular.
2. Let p be the pumping length given by the pumping

lemma.
3. Choose cleverly an s in L of length at least p, such that
4. For all ways of decomposing s into xyz, where |xy| ≤ p

and y is not null,
5. There is an i ≥ 0 such that xyiz is not in L.

Can’t wait to use it!

4R. Rao, CSE 322

Proving non-regularity as a Two-Person game

An alternate view: Think of it as a game between you and an
opponent (JS):
1. You: Assume L is regular
2. JS: Chooses some value p
3. You: Choose cleverly an s in L of length ≥ p
4. JS: Breaks s into some xyz, where |xy| ≤ p and |y| ≥ 1,
5. You: Need to choose an i ≥ 0 such that xyiz is not in L (in

order to win (the prize of non-regularity)!)
(Note: Your i should work for all possible xyz that JS chooses,

given your s)

5R. Rao, CSE 322

Proving Non-Regularity using the Pumping Lemma

Examples: Show the following are not regular
L1 = {0n1n | n ≥ 0} over the alphabet {0, 1}
L2 = {ww | w in {0, 1}*}
PRIMES = {0n | n is prime} over the alphabet {0}
L3 = {w | w contains an equal number of 0s and 1s} over
the alphabet {0, 1}
DISTINCT = {x1#x2#...#xn | xi in 0* and xi ≠ xj for i ≠ j}

(last two can be proved using closure properties of regular
languages)

6R. Rao, CSE 322

If {0n1n | n ≥ 0} is not Regular, what is it?

Irregular??

Enter…the world of Grammars (after midterm)

7R. Rao, CSE 322

CSE 322: Midterm Review

Basic Concepts (Chapter 0)
Sets

Notation and Definitions
A = {x | rule about x}, x ∈ A, A ⊆ B, A = B
∃ (“there exists”), ∀ (“for all”)

Finite and Infinite Sets
Set of natural numbers N, integers Z, reals R etc.
Empty set ∅

Set operations: Know the definitions for proofs
Union: A ∪ B = {x | x ∈ A or x ∈ B}
Intersection A ∩ B = {x | x ∈ A and x ∈ B}
Complement A = {x | x ∉ A}

8R. Rao, CSE 322

Basic Concepts (cont.)

Set operations (cont.)
Power set of A = Pow(A) or 2A = set of all subsets of A

E.g. A = {0,1} 2A = {∅, {0}, {1}, {0,1}}
Cartesian Product A × B = {(a,b) | a ∈ A and b ∈ B}

Functions:
f: Domain → Range

Add(x,y) = x + y Add: Z × Z → Z
Definitions of 1-1 and onto (bijection if both)

9R. Rao, CSE 322

Strings

Alphabet ∑ = finite set of symbols, e.g. ∑ = {0,1}

String w = finite sequence of symbols ∈ ∑
w = w1w2…wn

String properties: Know the definitions
Length of w = |w| (|w| = n if w = w1w2…wn)
Empty string = ε (length of ε = 0)
Substring of w
Reverse of w = wR = wnwn-1…w1
Concatenation of strings x and y (append y to x)
yk = concatenate y to itself to get string of k y’s
Lexicographical order = order based on length and
dictionary order within equal length

10R. Rao, CSE 322

Languages and Proof Techniques

Language L = set of strings over an alphabet (i.e. L ⊆ ∑*)
E.g. L = {0n1n | n ≥ 0} over ∑ = {0,1}
E.g. L = {p | p is a syntactically correct C++ program} over ∑ =
ASCII characters

Proof Techniques: Look at lecture slides, handouts, and notes
1. Proof by counterexample
2. Proof by contradiction
3. Proof of set equalities (A = B)
4. Proof of “iff” (X⇔Y) statements (prove both X⇒Y and X⇐Y)
5. Proof by construction
6. Proof by induction
7. Pigeonhole principle
8. Dovetailing to prove a set is countably infinite E.g. Z or N × N
9. Diagonalization to prove a set is uncountable E.g. 2N or Reals

11R. Rao, CSE 322

Chapter 1 Review: Languages and Machines

q0

12R. Rao, CSE 322

Languages and Machines (Chapter 1)

Language = set of strings over an alphabet
Empty language = language with no strings = ∅
Language containing only empty string = {ε}

DFAs
Formal definition M = (Q, ∑, δ, q0, F)
Set of states Q, alphabet ∑, start state q0, accept (“final”)
states F, transition function δ: Q × ∑ → Q
M recognizes language L(M) = {w | M accepts w}
In class examples:
E.g. DFA for L(M) = {w | w ends in 0}
E.g. DFA for L(M) = {w | w does not contain 00}
E.g. DFA for L(M) = {w | w contains an even # of 0’s}

Try: DFA for L(M) = {w | w contains an even # of 0’s and an odd
number of 1’s}

13R. Rao, CSE 322

Languages and Machines (cont.)

Regular Language = language recognized by a DFA

Regular operations: Union ∪, Concatenation ° and star *
Know the definitions of A ∪ B, A°B and A*
∑ = {0,1} ∑* = {ε, 0 ,1, 00, 01, …}

Regular languages are closed under the regular operations
Means: If A and B are regular languages, we can show A ∪ B,
A°B and A* (and also B*) are regular languages
Cartesian product construction for showing A ∪ B is regular by
simulating DFAs for A and B in parallel

Other related operations: A ∩ B and complement A
Are regular languages closed under these operations?

14R. Rao, CSE 322

NFAs, Regular expressions, and GNFAs

NFAs vs DFAs
DFA: δ(state,symbol) = next state
NFA: δ(state,symbol or ε) = set of next states

Features: Missing outgoing edges for one or more symbols,
multiple outgoing edges for same symbol, ε-edges

Definition of: NFA N accepts a string w ∈ ∑*
Definition of: NFA N recognizes a language L(N) ⊆ ∑*
E.g. NFA for L = {w | w = x1a, x ∈ ∑* and a ∈ ∑}

Regular expressions: Base cases ε, ∅, a ∈ Σ, and R1 ∪ R2,
R1°R2 or R1*

GNFAs = NFAs with edges labeled by regular expressions
Used for converting NFAs/DFAs to regular expressions

15R. Rao, CSE 322

Main Results and Proofs

L is a Regular Language iff
L is recognized by a DFA iff
L is recognized by an NFA iff
L is recognized by a GNFA iff
L is described by a Regular Expression

Proofs:
NFA DFA: subset construction (1 DFA state=subset of NFA states)
DFA GNFA Reg Exp: Repeat two steps:
1. Collapse two parallel edges to one edge labeled (a ∪ b), and
2. Replace edges through a state with a loop with one edge

labeled (ab*c)
Reg Exp NFA: combine NFAs for base cases with ε-transitions

16R. Rao, CSE 322

Other Results

Using NFAs to show that Regular Languages are closed
under:

Regular operations ∪, ° and *

Are Regular Languages closed under:
intersection?
complement?

Are there other operations that regular languages are closed
under?

17R. Rao, CSE 322

What about the
idon’tcare
operation?

What about the
reversal

operation?

What about the
subset

operation?

18R. Rao, CSE 322

Other Results

Are Regular languages closed under:
reversal?
subset (⊆) ?
superset (⊇) ?
Prefix?
Prefix(L) = {w | w ∈ Σ* and wx ∈ L for some x ∈ Σ*}
NoExtend?
NoExtend(L) = { w | w ∈ L but wx ∉ L for all x ∈ Σ*-{ε}}

19R. Rao, CSE 322

Pumping Lemma

Pumping lemma in plain English (sort of): If L is regular, then
there is a p (= number of states of a DFA accepting L) such
that any string s in L of length ≥ p can be expressed as s = xyz
where y is not null (y is the loop in the DFA), |xy| ≤ p (loop
occurs within p state transitions), and any “pumped” string
xyiz is in L for all i ≥ 0 (go through the loop 0 or more times).

Pumping lemma in plain Logic:
L regular ⇒ ∃p s.t. (∀s∈L s.t. |s| ≥ p (∃x,y,z∈∑* s.t. (s = xyz)

and (|y| ≥ 1) and (|xy| ≤ p) and (∀i ≥ 0, xyiz∈L)))

Is the other direction ⇐ also true?
No! See Problem 1.54 for a counterexample

20R. Rao, CSE 322

Proving Non-Regularity using the Pumping Lemma

Proof by contradiction to show L is not regular
1. Assume L is regular. Then L must satisfy the P. Lemma.
2. Let p be the “pumping length”
3. Choose a long enough string s ∈ L such that |s| ≥ p
4. Let x,y,z be strings such that s = xyz, |y| ≥ 1, and |xy| ≤ p
5. Pick an i ≥ 0 such that xyiz ∉ L (for all possible x,y,z as in 4)
This contradicts the P. lemma. Therefore, L is not regular

Examples: {0n1n|n ≥ 0}, {ww| w ∈∑*}, {0m |m prime}, SUB
= {x=y-z | x, y, z are binary numbers and x is diff of y and z}

Can sometimes also use closure under ∩ (and/or complement)
E.g. If L ∩ B = L1 where B is regular and L1 is not regular, then
L is also not regular (if L was regular, L1 would be regular)

21R. Rao, CSE 322

Some Applications of Regular Languages

Pattern matching and searching:
E.g. In Unix:

ls *.c
cp /myfriends/games/*.* /mydir/
grep ’Spock’ *trek.txt

Compilers:
id ::= letter (letter | digit)*
int ::= digit digit*
float ::= d d*.d*(ε | E d d*)
The symbol | stands for “or” (= union)

22R. Rao, CSE 322

Good luck on the midterm!

You can bring one 8 1/2'' x 11'' review sheet (double-sided ok)

The questions sheet will have space for answers. We will also
bring extra blank sheets for those not so fond of brevity.

Don’t sweat it!

• Go through the homeworks, lecture slides, and examples
in the text (Chapters 0 and 1 only)

• Do the practice midterm on the website
and avoid being surprised!

23R. Rao, CSE 322

Da Pumpin’ Lemma
(adapted from a poem by Harry Mairson)

Any regulah language L has a magic numba p
And any long-enuff word s in L has da followin’ propa’ty:
Amongst its first p symbols issa segment u can find
Whoz repetition or omission leaves s amongst its kind.
So if ya find a lango L which fails dis acid test,
And some long word ya pump becomes distinct from all da rest,
By contradixion ya have shown L is not
A regular homie, resilient to da pumpin’ u’ve wrought.
But if, on da otha’ hand, s stays within its L,
Then eitha L is regulah, or else ya chose not well.
For s is xyz, where y is not empty,
And y must come befo’ da p+1th symbol u see.

Based on: http://www.cs.brandeis.edu/~mairson/poems/node1.html

Hear it on the new album:
Dig dat funky DFA

	Formal Statement of the Pumping Lemma
	Pumping Lemma in Plain English
	Using The Pumping Lemma
	Proving non-regularity as a Two-Person game
	Proving Non-Regularity using the Pumping Lemma
	If {0n1n | n  0} is not Regular, what is it?
	CSE 322: Midterm Review
	Basic Concepts (cont.)
	Strings
	Languages and Proof Techniques
	Chapter 1 Review: Languages and Machines
	Languages and Machines (Chapter 1)
	Languages and Machines (cont.)
	NFAs, Regular expressions, and GNFAs
	Main Results and Proofs
	Other Results
	Other Results
	Pumping Lemma
	Proving Non-Regularity using the Pumping Lemma
	Some Applications of Regular Languages
	Good luck on the midterm!
	Da Pumpin’ Lemma�(adapted from a poem by Harry Mairson)

