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Formal Statement of the Pumping Lemma

Pumping Lemma: If L is regular, then ∃ p such 
that ∀ s in L with |s| ≥ p, ∃ x, y, z with s = xyz
and:
1. |y| ≥ 1, and
2. |xy| ≤ p, and
3. xyiz ∈ L ∀ i ≥ 0

Proof on board last time…(also in the textbook)

Proved in 1961 by Bar-Hillel, Peries and Shamir

Σ*
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Pumping Lemma in Plain English

Let L be a regular language and let p = “pumping length” = 
no. of states of a DFA accepting L

Then, any string s in L of length ≥ p can be expressed as s = 
xyz where:

y is not empty (y is the cycle)
|xy| ≤ p (cycle occurs within p state transitions), and 
any “pumped” string xyiz is also in L for all i ≥ 0 (go 
through the cycle 0 or more times)

I liked the formal statement better…

That’s 
more 

like it…
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Using The Pumping Lemma

In-Class Examples: Using the pumping lemma to show a 
language L is not regular

5 steps for a proof by contradiction:
1. Assume L is regular.
2. Let p be the pumping length given by the pumping 

lemma. 
3. Choose cleverly an s in L of length at least p, such that
4. For all ways of decomposing s into xyz, where |xy| ≤ p 

and y is not null, 
5. There is an i ≥ 0 such that xyiz is not in L. 

Can’t wait to use it!
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Proving non-regularity as a Two-Person game

An alternate view: Think of it as a game between you and an 
opponent (JS):
1. You: Assume L is regular
2. JS: Chooses some value p
3. You: Choose cleverly an s in L of length ≥ p
4. JS: Breaks s into some xyz, where |xy| ≤ p and |y| ≥ 1, 
5. You:  Need to choose an i ≥ 0 such that xyiz is not in L (in 

order to win (the prize of non-regularity)!)
(Note: Your i should work for all possible xyz that JS chooses, 

given your s)
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Proving Non-Regularity using the Pumping Lemma

Examples: Show the following are not regular
L1 = {0n1n | n ≥ 0} over the alphabet {0, 1}
L2 = {ww | w in {0, 1}*} 
PRIMES = {0n | n is prime} over the alphabet {0}
L3 = {w | w contains an equal number of 0s and 1s} over 
the alphabet {0, 1}
DISTINCT = {x1#x2#...#xn | xi in 0* and xi ≠ xj for i ≠ j}

(last two can be proved using closure properties of regular 
languages)
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If {0n1n | n ≥ 0} is not Regular, what is it?

Irregular??

Enter…the world of Grammars (after midterm)
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CSE 322: Midterm Review

Basic Concepts (Chapter 0)
Sets

Notation and Definitions
A = {x | rule about x}, x ∈ A, A ⊆ B, A = B
∃ (“there exists”), ∀ (“for all”)

Finite and Infinite Sets
Set of natural numbers N, integers Z, reals R etc.
Empty set ∅

Set operations: Know the definitions for proofs
Union: A ∪ B = {x | x ∈ A or x ∈ B}
Intersection A ∩ B = {x | x ∈ A and x ∈ B}
Complement A = {x | x ∉ A}
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Basic Concepts (cont.)

Set operations (cont.)
Power set of A = Pow(A) or 2A = set of all subsets of A

E.g. A = {0,1}  2A = {∅, {0}, {1}, {0,1}}
Cartesian Product A × B = {(a,b) | a ∈ A and b ∈ B}

Functions:  
f: Domain → Range

Add(x,y) = x + y  Add: Z × Z → Z
Definitions of 1-1 and onto (bijection if both)
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Strings

Alphabet ∑ = finite set of symbols, e.g. ∑ = {0,1}

String w = finite sequence of symbols ∈ ∑
w = w1w2…wn

String properties: Know the definitions
Length of w = |w|      (|w| = n if w = w1w2…wn)
Empty string = ε (length of ε = 0)
Substring of w
Reverse of w = wR = wnwn-1…w1
Concatenation of strings x and y (append y to x)
yk = concatenate y to itself to get string of k y’s
Lexicographical order = order based on length and 
dictionary order within equal length
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Languages and Proof Techniques

Language L = set of strings over an alphabet  (i.e. L ⊆ ∑*)
E.g. L = {0n1n | n ≥ 0} over ∑ = {0,1}
E.g. L = {p | p is a syntactically correct C++ program} over ∑ = 
ASCII characters

Proof Techniques: Look at lecture slides, handouts, and notes
1. Proof by counterexample
2. Proof by contradiction
3. Proof of set equalities (A = B)
4. Proof of “iff” (X⇔Y) statements (prove both X⇒Y and X⇐Y)
5. Proof by construction
6. Proof by induction
7. Pigeonhole principle
8. Dovetailing to prove a set is countably infinite E.g. Z or N × N
9. Diagonalization to prove a set is uncountable E.g. 2N or Reals
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Chapter 1 Review: Languages and Machines 

q0
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Languages and Machines (Chapter 1)

Language = set of strings over an alphabet 
Empty language = language with no strings = ∅
Language containing only empty string = {ε}

DFAs
Formal definition M = (Q, ∑, δ, q0, F)
Set of states Q, alphabet ∑, start state q0, accept (“final”) 
states F, transition function δ: Q × ∑ → Q 
M recognizes language L(M) = {w | M accepts w}
In class examples:
E.g. DFA for L(M) = {w | w ends in 0}
E.g. DFA for L(M) = {w | w does not contain 00}
E.g. DFA for L(M) = {w | w contains an even # of 0’s}

Try: DFA for L(M) = {w | w contains an even # of 0’s and an odd 
number of 1’s}
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Languages and Machines (cont.)

Regular Language = language recognized by a DFA

Regular operations: Union ∪, Concatenation ° and star *
Know the definitions of A ∪ B, A°B and A* 
∑ = {0,1}    ∑* = {ε, 0 ,1, 00, 01, …}

Regular languages are closed under the regular operations
Means: If A and B are regular languages, we can show A ∪ B, 
A°B and A* (and also B*) are regular languages
Cartesian product construction for showing A ∪ B is regular by 
simulating DFAs for A and B in parallel

Other related operations: A ∩ B and complement A
Are regular languages closed under these operations?
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NFAs, Regular expressions, and GNFAs

NFAs vs DFAs
DFA: δ(state,symbol) = next state
NFA: δ(state,symbol or ε) =  set of next states

Features: Missing outgoing edges for one or more symbols, 
multiple outgoing edges for same symbol, ε-edges

Definition of: NFA N accepts a string w ∈ ∑* 
Definition of: NFA N recognizes a language L(N) ⊆ ∑*
E.g. NFA for L = {w | w = x1a, x ∈ ∑* and a ∈ ∑} 

Regular expressions: Base cases ε, ∅, a ∈ Σ, and R1 ∪ R2, 
R1°R2 or R1* 

GNFAs = NFAs with edges labeled by regular expressions
Used for converting NFAs/DFAs to regular expressions
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Main Results and Proofs

L is a Regular Language iff
L is recognized by a DFA iff
L is recognized by an NFA iff
L is recognized by a GNFA iff
L is described by a Regular Expression

Proofs:
NFA DFA: subset construction (1 DFA state=subset of NFA states)
DFA GNFA Reg Exp: Repeat two steps:
1. Collapse two parallel edges to one edge labeled (a ∪ b), and 
2. Replace edges through a state with a loop with one edge 

labeled (ab*c)
Reg Exp NFA: combine NFAs for base cases with ε-transitions
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Other Results

Using NFAs to show that Regular Languages are closed 
under: 

Regular operations ∪, ° and *

Are Regular Languages closed under:
intersection?
complement?

Are there other operations that regular languages are closed 
under?
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What about the 
idon’tcare
operation?

What about the 
reversal 

operation?

What about the 
subset

operation?
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Other Results

Are Regular languages closed under:
reversal?
subset (⊆) ?
superset (⊇) ?
Prefix?
Prefix(L) = {w | w ∈ Σ* and wx ∈ L for some x ∈ Σ*}
NoExtend?
NoExtend(L) = { w | w ∈ L but wx ∉ L for all x ∈ Σ*-{ε}}
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Pumping Lemma

Pumping lemma in plain English (sort of): If L is regular, then 
there is a p (= number of states of a DFA accepting L) such 
that any string s in L of length ≥ p can be expressed as s = xyz
where y is not null (y is the loop in the DFA), |xy| ≤ p (loop 
occurs within p state transitions), and any “pumped” string 
xyiz is in L for all i ≥ 0 (go through the loop 0 or more times).

Pumping lemma in plain Logic:
L regular ⇒ ∃p s.t. (∀s∈L s.t. |s| ≥ p (∃x,y,z∈∑* s.t. (s = xyz) 

and (|y| ≥ 1) and (|xy| ≤ p) and (∀i ≥ 0, xyiz∈L)))

Is the other direction ⇐ also true?
No! See Problem 1.54 for a counterexample
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Proving Non-Regularity using the Pumping Lemma

Proof by contradiction to show L is not regular
1. Assume L is regular. Then L must satisfy the P. Lemma.
2. Let p be the “pumping length”
3. Choose a long enough string s ∈ L such that |s| ≥ p 
4. Let x,y,z be strings such that s = xyz, |y| ≥ 1, and |xy| ≤ p
5. Pick an i ≥ 0 such that xyiz ∉ L (for all possible x,y,z as in 4)
This contradicts the P. lemma. Therefore, L is not regular

Examples: {0n1n|n ≥ 0}, {ww| w ∈∑*}, {0m |m prime}, SUB 
= {x=y-z | x, y, z are binary numbers and x is diff of y and z}

Can sometimes also use closure under ∩ (and/or complement)
E.g. If L ∩ B = L1 where B is regular and L1 is not regular, then 
L is also not regular (if L was regular, L1 would be regular)
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Some Applications of Regular Languages

Pattern matching and searching:
E.g. In Unix:

ls *.c
cp /myfriends/games/*.* /mydir/
grep ’Spock’ *trek.txt

Compilers: 
id ::= letter (letter | digit)*
int ::= digit digit*
float ::= d d*.d*(ε | E d d*)
The symbol | stands for “or” (= union)



22R. Rao, CSE 322

Good luck on the midterm!

You can bring one 8 1/2'' x 11'' review sheet (double-sided ok)

The questions sheet will have space for answers. We will also 
bring extra blank sheets for those not so fond of  brevity.

Don’t sweat it!

• Go through the homeworks, lecture slides, and examples  
in the text (Chapters 0 and 1 only)

• Do the practice midterm on the website 
and avoid being surprised!
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Da Pumpin’ Lemma
(adapted from a poem by Harry Mairson)

Any regulah language L has a magic numba p
And any long-enuff word s in L has da followin’ propa’ty:
Amongst its first p symbols issa segment u can find
Whoz repetition or omission leaves s amongst its kind.
So if ya find a lango L which fails dis acid test,
And some long word ya pump becomes distinct from all da rest,
By contradixion ya have shown L is not
A regular homie, resilient to da pumpin’ u’ve wrought. 
But if, on da otha’ hand, s stays within its L,
Then eitha L is regulah, or else ya chose not well.
For s is xyz, where y is not empty,
And y must come befo’ da p+1th symbol u see.

Based on: http://www.cs.brandeis.edu/~mairson/poems/node1.html

Hear it on the new album: 
Dig dat funky DFA
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