Formal Statement of the Pumping Lemma

- ◆ Pumping Lemma: If L is regular, then ∃ p such that \forall s in L with $|s| \ge p$, ∃ x, y, z with s = xyz and:
 - 1. $|y| \ge 1$, and
 - 2. $|xy| \le p$, and
 - 3. $xy^i z \in L \forall i \ge 0$
- Proof on board last time...(also in the textbook)
- Proved in 1961 by Bar-Hillel, Peries and Shamir

I liked the formal statement better...

- Let L be a regular language and let p = "pumping length" = no. of states of a DFA accepting L
- ◆ Then, any string *s* in L of length \ge p can be expressed as *s* = *xyz* where:
 - \Rightarrow y is not empty (y is the cycle)
 - \Rightarrow $|xy| \le p$ (cycle occurs within p state transitions), and
 - ⇒ any "pumped" string $xy^i z$ is also in L for all $i \ge 0$ (go through the cycle 0 or more times)

Using The Pumping Lemma

- In-Class Examples: Using the pumping lemma to show a language L is *not regular*

 - 1. Assume L is regular.
 - 2. Let p be the pumping length given by the pumping lemma.
 - 3. Choose cleverly an *s* in L of length at least p, such that
 - 4. For *all ways* of decomposing *s* into *xyz*, where $|xy| \le p$ and *y* is not null,
 - 5. There is an $i \ge 0$ such that $xy^i z$ is not in L.

- An alternate view: Think of it as a game between you and an opponent (JS):
 - 1. You: Assume L is regular
 - 2. JS: Chooses some value p
 - **3.** You: Choose cleverly an *s* in L of length \ge p
 - **4.** JS: Breaks *s* into some *xyz*, where $|xy| \le p$ and $|y| \ge 1$,
 - **5.** You: Need to choose an $i \ge 0$ such that $xy^i z$ is not in L (in order to win (the prize of non-regularity)!)
 - (<u>Note</u>: Your *i* should work for all possible *xyz* that JS chooses, given your *s*)

Proving Non-Regularity using the Pumping Lemma

Examples: Show the following are not regular

- $\Rightarrow L_1 = \{0^n 1^n \mid n \ge 0\} \text{ over the alphabet } \{0, 1\}$
- \Rightarrow L₂ = {ww | w in {0, 1}*}
- \Rightarrow PRIMES = {0ⁿ | n is prime} over the alphabet {0}
- ⇒ L₃ = {w | w contains an equal number of 0s and 1s} over the alphabet {0, 1}
- ⇒ DISTINCT = {x₁#x₂#...#x_n | x_i in 0* and x_i ≠ x_j for i ≠ j} (last two can be proved using closure properties of regular languages)

If $\{0^n1^n \mid n \ge 0\}$ is not Regular, what is it?

Enter...the world of Grammars (after midterm)

CSE 322: Midterm Review

- Basic Concepts (Chapter 0)
 - ⇔ Sets
 - Notation and Definitions
 - $A = \{x \mid \text{rule about } x\}, x \in A, A \subseteq B, A = B$
 - \exists ("there exists"), \forall ("for all")
 - Finite and Infinite Sets
 - Set of natural numbers N, integers Z, reals R etc.
 - Empty set \emptyset
 - Set operations: Know the definitions for proofs
 - Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 - Complement $\overline{A} = \{x \mid x \notin A\}$

Basic Concepts (cont.)

Set operations (cont.)

- \Rightarrow Power set of A = Pow(A) or 2^{A} = set of all subsets of A
 - E.g. A = $\{0,1\} \rightarrow 2^{A} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
- \Rightarrow Cartesian Product A × B = {(a,b) | a \in A and b \in B}
- Functions:
 - $\Rightarrow f: Domain \rightarrow Range$
 - $Add(x,y) = x + y \rightarrow Add: Z \times Z \rightarrow Z$
 - ⇒ Definitions of 1-1 and onto (bijection if both)

Strings

- Alphabet Σ = finite set of symbols, e.g. Σ = {0,1}
- ◆ String w = finite sequence of symbols ∈ ∑
 ⇒ w = w₁w₂...w_n
- String properties: Know the definitions
 - $\Rightarrow \text{ Length of } w = |w| \qquad (|w| = n \text{ if } w = w_1 w_2 \dots w_n)$
 - \Rightarrow Empty string = ϵ (length of $\epsilon = 0$)
 - \Rightarrow Substring of w
 - \Rightarrow Reverse of $w = w^R = w_n w_{n-1} \dots w_1$
 - \Rightarrow Concatenation of strings x and y (append y to x)
 - \Rightarrow y^k = concatenate y to itself to get string of k y's
 - Lexicographical order = order based on length and dictionary order within equal length

Languages and Proof Techniques

- ◆ Language L = set of strings over an alphabet (i.e. L $\subseteq \Sigma^*$)
 - ⇒ E.g. L = { $0^{n}1^{n} | n \ge 0$ } over $\sum = {0,1}$
 - \Rightarrow E.g. L = {p | p is a syntactically correct C++ program} over Σ = ASCII characters
- Proof Techniques: Look at lecture slides, handouts, and notes
 - 1. Proof by counterexample
 - 2. Proof by contradiction
 - 3. Proof of set equalities (A = B)
 - 4. Proof of "iff" (X \Leftrightarrow Y) statements (prove both X \Rightarrow Y and X \Leftarrow Y)
 - 5. Proof by construction
 - 6. Proof by induction
 - 7. Pigeonhole principle
 - 8. Dovetailing to prove a set is <u>countably infinite</u> E.g. Z or $N \times N$
 - 9. Diagonalization to prove a set is <u>uncountable</u> E.g. 2^{N} or Reals

Chapter 1 Review: Languages and Machines

Languages and Machines (Chapter 1)

- Language = set of strings over an alphabet
 - \Rightarrow Empty language = language with no strings = \emptyset
 - \Rightarrow Language containing only empty string = { ε }

DFAs

- ⇒ Formal definition $M = (Q, \Sigma, \delta, q_0, F)$
- Set of states Q, alphabet Σ , start state q_0 , accept ("final") states F, transition function $\delta: Q \times \Sigma \rightarrow Q$
- \Rightarrow M recognizes language L(M) = {w | M accepts w}
- \Rightarrow In class examples:

E.g. DFA for $L(M) = \{w \mid w \text{ ends in } 0\}$

- E.g. DFA for $L(M) = \{w \mid w \text{ does not contain } 00\}$
- E.g. DFA for $L(M) = \{w \mid w \text{ contains an even } \# \text{ of } 0\text{'s}\}$
- Try: DFA for L(M) = {w | w contains an even # of 0's and an odd number of 1's}

R. Rao, CSE 322

- Regular Language = language recognized by a DFA
- ◆ Regular operations: Union \cup , Concatenation \circ and star *
 - ⇒ Know the definitions of $A \cup B$, $A_\circ B$ and A^*
 - $\Rightarrow \quad \sum = \{0,1\} \quad \Rightarrow \quad \sum^* = \{\varepsilon, 0, 1, 00, 01, \dots\}$
- Regular languages are closed under the regular operations
 - ◇ Means: If A and B are regular languages, we can show A ∪ B,
 A₀B and A* (and also B*) are regular languages
 - ⇒ Cartesian product construction for showing A ∪ B is regular by simulating DFAs for A and B in parallel
- ◆ Other related operations: A ∩ B and complement A
 ⇒ Are regular languages closed under these operations?

NFAs, Regular expressions, and GNFAs

NFAs vs DFAs

- \Rightarrow DFA: δ (state,symbol) = next state
- \Rightarrow NFA: δ (state,symbol or ε) = set of next states
 - Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, ε-edges
- ⇒ Definition of: NFA N accepts a string $w \in \sum^*$
- ⇒ Definition of: NFA N recognizes a language $L(N) \subseteq \sum^*$
- \Rightarrow E.g. NFA for L = {w | w = x1a, x \in \Sigma^* and a \in \Sigma}
- A Regular expressions: Base cases ε, Ø, a ∈ Σ, and R1 ∪ R2, R1°R2 or R1*
- GNFAs = NFAs with edges labeled by regular expressions
 Used for converting NFAs/DFAs to regular expressions
 R. Rao, CSE 322

Main Results and Proofs

- L is a Regular Language iff
 - ⇒ L is recognized by a DFA iff
 - ⇒ L is recognized by an NFA iff
 - ⇒ L is recognized by a GNFA iff
- Proofs:
 - \Rightarrow NFA \rightarrow DFA: subset construction (1 DFA state=subset of NFA states)
 - \Rightarrow DFA \rightarrow GNFA \rightarrow Reg Exp: Repeat two steps:
 - 1. Collapse two parallel edges to one edge labeled (a \cup b), and
 - 2. Replace edges through a state with a loop with one edge labeled (ab*c)
 - ⇒ Reg Exp→NFA: combine NFAs for base cases with ε -transitions

Other Results

- Using NFAs to show that Regular Languages are closed under:
 - \Rightarrow Regular operations \cup , \circ and *
- Are Regular Languages closed under:
 - \Rightarrow intersection?
 - ↔ complement?
- Are there other operations that regular languages are closed under?

R. Rao, CSE 322

Other Results

- Are Regular languages closed under:
 - \Rightarrow reversal?
 - \Rightarrow subset (\subseteq) ?
 - \Rightarrow superset (\supseteq) ?
 - \Rightarrow Prefix?

Prefix(L) = {w | $w \in \Sigma^*$ and $wx \in L$ for some $x \in \Sigma^*$ }

✤ NoExtend?

NoExtend(L) = { w | w \in L but wx \notin L for all x $\in \Sigma^* - \{\epsilon\}$ }

Pumping Lemma

- Pumping lemma in plain English (sort of): If L is regular, then
 there is a p (= number of states of a DFA accepting L) such
 that any string s in L of length ≥ p can be expressed as s = xyz
 where y is not null (y is the loop in the DFA), |xy/ ≤ p (loop
 occurs within p state transitions), and any "pumped" string
 xyⁱz is in L for all i ≥ 0 (go through the loop 0 or more times).
- *Pumping lemma in plain Logic:* L regular ⇒ ∃p s.t. (∀s∈L s.t. |s| ≥ p (∃x,y,z∈∑* s.t. (s = xyz) and (|y| ≥ 1) and (|xy| ≤ p) and (∀i ≥ 0, xyⁱz∈L)))
- ◆ Is the other direction ⇐ also true?
 No! See Problem 1.54 for a counterexample

R. Rao, CSE 322

Proving Non-Regularity using the Pumping Lemma

- Proof by contradiction to show L is not regular
 - 1. Assume L is regular. Then L must satisfy the P. Lemma.
 - 2. Let p be the "pumping length"
 - 3. Choose a long enough string $s \in L$ such that $|s| \ge p$
 - 4. Let x,y,z be strings such that s = xyz, $|y| \ge 1$, and $|xy| \le p$

5. <u>Pick an i \ge 0 such that xyⁱz \notin L (for *all possible* x,y,z as in 4)</u> This contradicts the P. lemma. Therefore, L is not regular

- ★ Examples: {0ⁿ1ⁿ|n ≥ 0}, {ww| w ∈ Σ*}, {0^m |m prime}, SUB
 = {x=y-z | x, y, z are binary numbers and x is diff of y and z}
- Can sometimes also use closure under ∩ (and/or complement)
 ⇒ E.g. If L ∩ B = L₁ where B is regular and L₁ is not regular, then L is also not regular (if L was regular, L₁ would be regular)

Some Applications of Regular Languages

Pattern matching and searching:

- \Rightarrow E.g. In Unix:
 - ls *.c
 - cp /myfriends/games/*.* /mydir/
 - grep 'Spock' *trek.txt

Compilers:

- ◇ id ::= letter (letter | digit)*
- ♀ int ::= digit digit*
- \Rightarrow The symbol | stands for "or" (= union)

Good luck on the midterm!

- ✦ You can bring one 8 1/2" x 11" review sheet (double-sided ok)
- The questions sheet will have space for answers. We will also bring extra blank sheets for those not so fond of brevity.

Don't sweat it!

- Go through the homeworks, lecture slides, and examples in the text (<u>Chapters 0 and 1 only</u>)
- Do the practice midterm on the website and avoid being surprised!

R. Rao, CSE 322

Da Pumpin' Lemma

(adapted from a poem by Harry Mairson)

Hear it on the new album: Dig dat funky DFA

Any regulah language L has a magic numba pAnd any long-enuff word s in L has da followin' propa'ty: Amongst its first p symbols issa segment u can find Whoz repetition or omission leaves s amongst its kind.

So if ya find a lango *L* which fails dis acid test, And some long word ya pump becomes distinct from all da rest, By contradixion ya have shown *L* is not A regular homie, resilient to da pumpin' u've wrought.

But if, on da otha' hand, *s* stays within its *L*, Then eitha *L* is regulah, or else ya chose not well. For *s* is *xyz*, where *y* is not empty, And *y* must come befo' da $p+1^{th}$ symbol u see.