
1R. Rao, CSE 322

CSE 322: Regular Expressions and Finite Automata

Definition of a Regular Expression
R is a regular expression iff
R is a string over Σ ∪ { ε, ∅, (,), ∪, * } and R is:
1. Some symbol a ∈ Σ, or
2. ε, or
3. ∅, or
4. (R1 ∪ R2) where R1 and R2 are regular exps., or
5. R1R2 = R1°R2 where R1 and R2 are reg. exps., or
6. R1* where R1 is a regular expression.

Precedence: Evaluate * first, then o, then ∪
E.g. 0 ∪ 11* = 0 ∪ (1° (1*)) = {0} ∪ {1, 11, 111, …}

2R. Rao, CSE 322

Examples

What is R for each of the following languages?
1. L(R) = {w | w contains exactly two 0’s}
2. L(R) = {w | w contains at least two 0’s}
3. L(R) = {w | w contains an even number of 0’s}
4. L(R) = {w | w does not contain 00}
5. L(R) = {w | w is a valid identifier in C} (or in

Java)
6. L(R) = {w | w is a word heard on the MTV

show “The Osbournes”}

3R. Rao, CSE 322

Are u saying our
language is regular??

4R. Rao, CSE 322

Regular Expressions and Finite Automata

What is the relationship between regular expressions and
DFAs/NFAs?

Specifically:
1. R NFA? Given a reg. exp. R, can we create an NFA N

such that L(R) = L(N)?
2. NFA R? Given an NFA N (or its equivalent DFA M),

can we come up with a reg. exp. R such that L(M) = L(R)?

Kevin
Bacon

I think so…do you??

5R. Rao, CSE 322

From Regular Expressions to NFAs

Problem: Given any regular expression R, how do we
construct an NFA N such that L(N) = L(R)?

Soln.: Use the multi-part definition of regular expressions!!
Show how to construct an NFA for each possible case in the
definition: R = a, or R = ε, or R = ∅, or R = (R1 ∪ R2), or
R = R1°R2, or R = R1*.

Example: Draw NFA for 10Σ*01

Kevin
Bacon

Told ya ‘twas possible!

6R. Rao, CSE 322

From NFAs/DFAs to Regular Expressions

Problem: Given any NFA (or DFA) N, how do we construct
a regular expression R such that L(N) = L(R)?

Solution:
Idea: Collapse 2 or more edges in N labeled with single
symbols to a new edge labeled with an equivalent regular
expression
This results in a “generalized” NFA (GNFA)
Our goal: Get a GNFA with 2 states (start and accept)
connected by a single edge labeled with the required regular
expression R

7R. Rao, CSE 322

From NFAs/DFAs to Regular Expressions

Steps for extracting regular expressions from NFAs/DFAs:
1. Add new start state connected to old one via an ε–transition
2. Add new accept state receiving ε–transitions from all old ones
3. Keep applying 2 rules until only start and accept states remain:

1. Collapse Parallel Edges:

2. Remove “loopy” states:

q1 q2b

a
q1 q2a ∪ b

Note: Also
applies when
q1 = q2

b

q1 q3 q2a c q1 q2a b*c
Note: Also
applies when
q1 = q2

(Example: On board and in textbook)

8R. Rao, CSE 322

Beyond the Regular world…

Are there languages that are not regular?
How do we prove it?

Idea: If a language violates a property obeyed by all
regular languages, it cannot be regular!

Pumping Lemma for showing non-regularity of languages

I love ze pumping
lemma!

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm

9R. Rao, CSE 322

The Pumping Lemma for Regular Languages

What is it?
A statement (“lemma”) that is true for all regular
languages

Why is it useful?
Can be used to show that certain languages are not
regular
How? By contradiction: Assume the given language is
regular and show that it does not satisfy the pumping
lemma

Σ*

10R. Rao, CSE 322

More about the Pumping Lemma

What is the idea behind it?
Any regular language L has a DFA M that
recognizes it
If M has p states and accepts a string of length ≥
p, the sequence of states M goes through must
contain a cycle (repetition of a state)
Why?

Due to the pigeonhole principle! p states allow
at most p-1 transitions before a state is
repeated.

Therefore, all strings that make M go through this
cycle 0 or any number of times are also accepted
by M and should be in L.

Σ*

11R. Rao, CSE 322

Formal Statement of the Pumping Lemma

Pumping Lemma: If L is regular, then ∃ p such that ∀ s in
L with |s| ≥ p, ∃ x, y, z with s = xyz and:
1. |y| ≥ 1, and
2. |xy| ≤ p, and
3. xyiz ∈ L ∀ i ≥ 0

Proof on board…(also in the textbook)

Proved in 1961 by Bar-Hillel, Peries and Shamir

12R. Rao, CSE 322

Pumping Lemma in Plain English

Let L be a regular language and let p = “pumping length” =
no. of states of a DFA accepting L

Then, any string s in L of length ≥ p can be expressed as s =
xyz where:

y is not empty (y is the cycle)
|xy| ≤ p (cycle occurs within p state transitions), and
any “pumped” string xyiz is also in L for all i ≥ 0 (go
through the cycle 0 or more times)

13R. Rao, CSE 322

Using The Pumping Lemma

In-Class Examples: Using the pumping lemma to show a
language L is not regular

5 steps for a proof by contradiction:
1. Assume L is regular.
2. Let p be the pumping length given by the pumping

lemma.
3. Choose cleverly an s in L of length at least p, such that
4. For all ways of decomposing s into xyz, where |xy| ≤ p

and y is not null,
5. There is an i ≥ 0 such that xyiz is not in L.

14R. Rao, CSE 322

Proving Non-Regularity using the Pumping Lemma

In class examples: Show the following are not regular
L1 = {0n1n | n ≥ 0} over the alphabet {0, 1}
L2 = {ww | w in {0, 1}*}

	CSE 322: Regular Expressions and Finite Automata
	Examples
	Regular Expressions and Finite Automata
	From Regular Expressions to NFAs
	From NFAs/DFAs to Regular Expressions
	From NFAs/DFAs to Regular Expressions
	Beyond the Regular world…
	The Pumping Lemma for Regular Languages
	More about the Pumping Lemma
	Formal Statement of the Pumping Lemma
	Pumping Lemma in Plain English
	Using The Pumping Lemma
	Proving Non-Regularity using the Pumping Lemma

