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CSE 322: Regular Expressions and Finite Automata

Definition of a Regular Expression
R is a regular expression iff
R is a string over Σ ∪ { ε, ∅, (, ), ∪, * } and R is:
1. Some symbol a ∈ Σ,  or
2. ε,  or
3. ∅,  or
4. (R1 ∪ R2)  where R1 and R2 are regular exps., or
5. R1R2 = R1°R2 where R1 and R2 are reg. exps., or
6. R1*  where R1 is a regular expression.

Precedence: Evaluate * first, then o, then ∪
E.g. 0 ∪ 11* = 0 ∪ (1° (1*)) = {0} ∪ {1, 11, 111, …}
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Examples

What is R for each of the following languages?
1. L(R) = {w | w contains exactly two 0’s}
2. L(R) = {w | w contains at least two 0’s}
3. L(R) = {w | w contains an even number of 0’s}
4. L(R) = {w | w does not contain 00}
5. L(R) = {w | w is a valid identifier in C} (or in 

Java)
6. L(R ) = {w | w is a word heard on the MTV 

show “The Osbournes”}



3R. Rao, CSE 322

Are u saying our 
language is regular??
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Regular Expressions and Finite Automata

What is the relationship between regular expressions and 
DFAs/NFAs?

Specifically: 
1. R NFA? Given a reg. exp. R, can we create an NFA N 

such that L(R) = L(N)?
2. NFA R? Given an NFA N (or its equivalent DFA M), 

can we come up with a reg. exp. R such that L(M) = L(R)?

Kevin
Bacon

I think so…do you??
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From Regular Expressions to NFAs

Problem: Given any regular expression R, how do we 
construct an NFA N such that L(N) = L(R)?

Soln.: Use the multi-part definition of regular expressions!!
Show how to construct an NFA for each possible case in the 
definition: R = a, or R = ε, or R = ∅, or R = (R1 ∪ R2), or 
R = R1°R2, or R = R1*.

Example: Draw NFA for 10Σ*01

Kevin
Bacon

Told ya ‘twas possible!
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From NFAs/DFAs to Regular Expressions

Problem: Given any NFA (or DFA) N, how do we construct 
a regular expression R such that L(N) = L(R)?

Solution:
Idea: Collapse 2 or more edges in N labeled with single 
symbols to a new edge labeled with an equivalent regular 
expression
This results in a “generalized” NFA (GNFA)
Our goal: Get a GNFA with 2 states (start and accept) 
connected by a single edge labeled with the required regular 
expression R
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From NFAs/DFAs to Regular Expressions

Steps for extracting regular expressions from NFAs/DFAs:
1. Add new start state connected to old one via an ε–transition
2. Add new accept state receiving ε–transitions from all old ones
3. Keep applying 2 rules until only start and accept states remain:

1. Collapse Parallel Edges:

2. Remove “loopy” states:

q1 q2b

a
q1 q2a ∪ b

Note: Also 
applies when 
q1 = q2

b

q1 q3 q2a c q1 q2a b*c
Note: Also 
applies when 
q1 = q2

(Example: On board and in textbook)
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Beyond the Regular world…

Are there languages that are not regular? 
How do we prove it?

Idea: If a language violates a property obeyed by all 
regular languages, it cannot be regular!

Pumping Lemma for showing non-regularity of languages

I love ze pumping 
lemma!

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm
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The Pumping Lemma for Regular Languages

What is it?
A statement (“lemma”) that is true for all regular 
languages

Why is it useful?
Can be used to show that certain languages are not 
regular
How? By contradiction: Assume the given language is 
regular and show that it does not satisfy the pumping 
lemma

Σ*
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More about the Pumping Lemma

What is the idea behind it?
Any regular language L has a DFA M that 
recognizes it
If M has p states and accepts a string of length ≥
p, the sequence of states M goes through must 
contain a cycle (repetition of a state) 
Why?

Due to the pigeonhole principle! p states allow 
at most p-1 transitions before a state is 
repeated. 

Therefore, all strings that make M go through this 
cycle 0 or any number of times are also accepted 
by M and should be in L. 

Σ*
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Formal Statement of the Pumping Lemma

Pumping Lemma: If L is regular, then ∃ p such that ∀ s in 
L with |s| ≥ p, ∃ x, y, z with s = xyz and:
1. |y| ≥ 1, and
2. |xy| ≤ p, and
3. xyiz ∈ L ∀ i ≥ 0

Proof on board…(also in the textbook)

Proved in 1961 by Bar-Hillel, Peries and Shamir
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Pumping Lemma in Plain English

Let L be a regular language and let p = “pumping length” = 
no. of states of a DFA accepting L

Then, any string s in L of length ≥ p can be expressed as s = 
xyz where:

y is not empty (y is the cycle)
|xy| ≤ p (cycle occurs within p state transitions), and 
any “pumped” string xyiz is also in L for all i ≥ 0 (go 
through the cycle 0 or more times)
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Using The Pumping Lemma

In-Class Examples: Using the pumping lemma to show a 
language L is not regular

5 steps for a proof by contradiction:
1. Assume L is regular.
2. Let p be the pumping length given by the pumping 

lemma. 
3. Choose cleverly an s in L of length at least p, such that
4. For all ways of decomposing s into xyz, where |xy| ≤ p 

and y is not null, 
5. There is an i ≥ 0 such that xyiz is not in L. 
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Proving Non-Regularity using the Pumping Lemma

In class examples: Show the following are not regular
L1 = {0n1n | n ≥ 0} over the alphabet {0, 1}
L2 = {ww | w in {0, 1}*} 
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