#### CSE 322: Regular Expressions and Finite Automata

#### ✦ Definition of a <u>Regular Expression</u>

- ⇒ R is a regular expression iff R is a string over  $\Sigma \cup \{ \epsilon, \emptyset, (, ), \cup, * \}$  and R is:
  - 1. Some symbol  $a \in \Sigma$ , or
  - 2. ε, <u>or</u>
  - 3. Ø, <u>or</u>
  - 4.  $(R_1 \cup R_2)$  where  $R_1$  and  $R_2$  are regular exps., <u>or</u>
  - 5.  $R_1R_2 = R_1^{\circ}R_2$  where  $R_1$  and  $R_2$  are reg. exps., <u>or</u>
  - 6.  $R_1^*$  where  $R_1$  is a regular expression.

# ◆ Precedence: Evaluate \* first, then °, then ∪ ⇒ E.g. 0 ∪ 11\* = 0 ∪ (1° (1\*)) = {0} ∪ {1, 11, 111, ...}

# Examples

- What is R for each of the following languages?
  - 1.  $L(R) = \{w \mid w \text{ contains exactly two 0's}\}$
  - 2.  $L(R) = \{w \mid w \text{ contains at least two 0's}\}$
  - 3.  $L(R) = \{w \mid w \text{ contains an even number of } 0's\}$
  - 4.  $L(R) = \{w \mid w \text{ does not contain } 00\}$
  - 5. L(R) = {w | w is a valid identifier in C} (or in Java)
  - 6. L(R) = {w | w is a word heard on the MTV show "The Osbournes"}



# Regular Expressions and Finite Automata

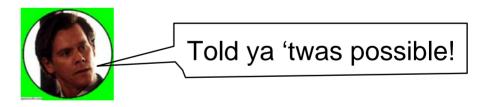
- What is the relationship between regular expressions and DFAs/NFAs?
- Specifically:
  - 1.  $\mathbf{R} \rightarrow \mathbf{NFA}$ ? Given a reg. exp. R, can we create an NFA N such that  $L(\mathbf{R}) = L(\mathbf{N})$ ?
  - 2. NFA  $\rightarrow$  R? Given an NFA N (or its equivalent DFA M), can we come up with a reg. exp. R such that L(M) = L(R)?



# From Regular Expressions to NFAs

- Problem: Given *any* regular expression R, how do we construct an NFA N such that L(N) = L(R)?
- Soln.: Use the multi-part definition of regular expressions!!
  ⇒ Show how to construct an NFA for each possible case in the definition: R = a, or R = ε, or R = Ø, or R = (R1 ∪ R2), or

 $R = R1^{\circ}R2$ , or  $R = R1^{*}$ .



#### • Example: Draw NFA for $10\Sigma^*01$

# From NFAs/DFAs to Regular Expressions

- Problem: Given any NFA (or DFA) N, how do we construct a regular expression R such that L(N) = L(R)?
- ✦ Solution:
  - Idea: Collapse 2 or more edges in N labeled with single symbols to a *new edge* labeled with an *equivalent regular expression*
  - ↔ This results in a "generalized" NFA (GNFA)
  - Our goal: Get a GNFA with 2 states (start and accept) connected by a single edge labeled with the required regular expression R

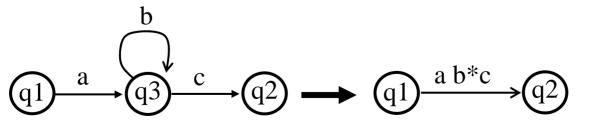
# From NFAs/DFAs to Regular Expressions

- Steps for extracting regular expressions from NFAs/DFAs:
  - 1. Add new start state connected to old one via an  $\epsilon$ -transition
  - 2. Add new accept state receiving  $\varepsilon$ -transitions from all old ones
  - 3. Keep applying 2 rules until only start and accept states remain:
    - 1. Collapse Parallel Edges:

$$\underbrace{q1}_{b} \underbrace{q2}_{q2} \longrightarrow \underbrace{q1}_{a \cup b} \underbrace{q2}_{q2}$$

Note: Also applies when q1 = q2

2. Remove "loopy" states:



Note: Also applies when q1 = q2

R. Rao, CSE 322 (Example: On board and in textbook)

# Beyond the Regular world...

✦ Are there languages that are *not* regular?
◇ How do we prove it?

Idea: If a language violates a property obeyed by all regular languages, it cannot be regular!
 Pumping Lemma for showing *non-regularity* of languages



R. Rao, CSE 322

http://www.ipjnet.com/schwarzenegger2/pages/arnold\_01.htm



# The Pumping Lemma for Regular Languages

#### • What is it?

A statement ("lemma") that is true for all regular languages

#### Why is it useful?

- Can be used to show that certain languages are *not* regular
- How? By contradiction: Assume the given language is regular and show that it does not satisfy the pumping lemma



# More about the Pumping Lemma

#### What is the idea behind it?

- Any regular language L has a DFA M that recognizes it
- ⇒ If M has p states and accepts a string of length ≥
   p, the sequence of states M goes through must contain a cycle (repetition of a state)
- $\Rightarrow$  Why?
  - Due to the *pigeonhole principle*! p states allow at most p-1 transitions before a state is repeated.
- Therefore, *all strings* that make M go through this cycle 0 or any number of times are also accepted by M and *should be in L*.

#### Formal Statement of the Pumping Lemma

- Pumping Lemma: If L is regular, then ∃ p such that ∀ s in L with |s| ≥ p, ∃ x, y, z with s = xyz and:
  1. |y| ≥ 1, and
  2. |xy| ≤ p, and
  3. xy<sup>i</sup>z ∈ L ∀ i ≥ 0
- Proof on board...(also in the textbook)
- Proved in 1961 by Bar-Hillel, Peries and Shamir

## Pumping Lemma in Plain English

- Let L be a regular language and let p = "pumping length" = no. of states of a DFA accepting L
- ◆ Then, any string *s* in L of length  $\ge$  p can be expressed as *s* = *xyz* where:
  - $\Rightarrow$  y is not empty (y is the cycle)
  - $\Rightarrow$   $|xy| \le p$  (cycle occurs within p state transitions), and
  - ⇒ any "pumped" string  $xy^i z$  is also in L for all  $i \ge 0$  (go through the cycle 0 or more times)

#### Using The Pumping Lemma

- In-Class Examples: Using the pumping lemma to show a language L is *not regular*

  - 1. Assume L is regular.
  - 2. Let p be the pumping length given by the pumping lemma.
  - 3. Choose cleverly an *s* in L of length at least p, such that
  - 4. For *all ways* of decomposing *s* into *xyz*, where  $|xy| \le p$  and *y* is not null,
  - 5. There is an  $i \ge 0$  such that  $xy^i z$  is not in L.

### Proving Non-Regularity using the Pumping Lemma

In class examples: Show the following are not regular
 ⇒ L<sub>1</sub> = {0<sup>n</sup>1<sup>n</sup> | n ≥ 0} over the alphabet {0, 1}
 ⇒ L<sub>2</sub> = {ww | w in {0, 1}\*}