CSE 322 Spring 2010

Homework Assignment # 2

Due Date: Friday, April 16 (at the beginning of class)

- 1. (20 points) Give examples of each of the following if possible. If not possible, explain why.
 - a. Two countably infinite sets A and B such that A is a proper subset of B
 - b. Two countably infinite sets whose cross product is uncountably infinite
 - c. Two uncountably infinite sets whose intersection is finite
 - d. Two uncountably infinite sets A and B such that (A-B) is uncountably infinite
- 2. (10 points) You are in the restroom of your local theatre that is playing the new disaster movie (or disaster of a movie) starring Ben Affleck. The restroom contains 6 stalls in a row. If 4 of these stalls are empty, prove that there is at least one empty stall that has another empty stall next to it. (Hint: Use the pigeonhole principle.)
- 3. (20 points) Consider the set Σ^* for $\Sigma = \{0,1\}$.
 - a. Prove that Σ^* is countably infinite.
 - b. At the annual CSE 322 theorem-proving cocktail party, a party crasher announces the following "proof" by diagonalization that Σ^* is in fact uncountable. What is wrong with this "proof"?

"Proof: By Contradiction. Suppose Σ^* is countably infinite. Then, there exists a bijection f: $N \rightarrow \Sigma^*$. We can create a new string s as follows:

*i*th symbol of s = 0 if the *i*th symbol of f(i) is 1

1 if the *i*th symbol of f(i) is 0

1 if length of f(i) < i (i.e. *i*th symbol does not exist)

Then, s differs from all the strings given by the function f. Since s is a binary string that is not among the outputs of f, this contradicts the fact that f is a bijection. Therefore, Σ^* is uncountable."

- 4. (50 points) Draw state diagrams of (deterministic) finite automata that recognize the following languages. In all cases, the alphabet is $\{0,1\}$.
 - a. {w | w begins with 1 and ends in 0}
 - b. {w | number of 1's in w is divisible by 3}
 - c. $\{w \mid \text{the third symbol of } w \text{ is } 1 \text{ and } w \text{ has odd length} \}$
 - d. $\{w \mid each 1 \text{ in } w \text{ is immediately preceded by a } 0\}$
 - e. $\{w \mid w \text{ contains an odd number of 0s and at least two 1s}\}$
 - f. {w | w contains a single 00 and a single 11}
 - g. $\{w \mid w \text{ contains at least two 0s and at most four 1s}\}$
 - h. $\{w \mid w \text{ does not contain } 101 \text{ or } 111\}$
 - i. the set $\{\epsilon\}$
 - j. the empty set