CSE 322 Spring 2010

Homework Assignment \# 2

Due Date: Friday, April 16 (at the beginning of class)

1. (20 points) Give examples of each of the following if possible. If not possible, explain why.
a. Two countably infinite sets A and B such that A is a proper subset of B
b. Two countably infinite sets whose cross product is uncountably infinite
c. Two uncountably infinite sets whose intersection is finite
d. Two uncountably infinite sets A and B such that (A-B) is uncountably infinite
2. (10 points) You are in the restroom of your local theatre that is playing the new disaster movie (or disaster of a movie) starring Ben Affleck. The restroom contains 6 stalls in a row. If 4 of these stalls are empty, prove that there is at least one empty stall that has another empty stall next to it. (Hint: Use the pigeonhole principle.)
3. (20 points) Consider the set $\Sigma *$ for $\Sigma=\{0,1\}$.
a. Prove that Σ^{*} is countably infinite.
b. At the annual CSE 322 theorem-proving cocktail party, a party crasher announces the following "proof" by diagonalization that Σ^{*} is in fact uncountable. What is wrong with this "proof"? "Proof: By Contradiction. Suppose Σ^{*} is countably infinite. Then, there exists a bijection $\mathrm{f}: \mathrm{N} \rightarrow \Sigma^{*}$. We can create a new string s as follows: i th symbol of $s=0$ if the i th symbol of $f(i)$ is 1

1 if the i th symbol of $f(i)$ is 0
1 if length of $f(i)<i$ (i.e. ith symbol does not exist)
Then, s differs from all the strings given by the function f. Since s is a binary string that is not among the outputs of f , this contradicts the fact that f is a bijection. Therefore, Σ^{*} is uncountable."
4. (50 points) Draw state diagrams of (deterministic) finite automata that recognize the following languages. In all cases, the alphabet is $\{0,1\}$.
a. $\{\mathrm{w} \mid \mathrm{w}$ begins with 1 and ends in 0$\}$
b. $\{\mathrm{w} \mid$ number of 1 's in w is divisible by 3$\}$
c. $\{\mathrm{w} \mid$ the third symbol of w is 1 and w has odd length $\}$
d. $\{\mathrm{w} \mid$ each 1 in w is immediately preceded by a 0$\}$
e. $\{\mathrm{w} \mid \mathrm{w}$ contains an odd number of 0 s and at least two 1 s$\}$
f. $\{\mathrm{w} \mid \mathrm{w}$ contains a single 00 and a single 11\}
g. $\{\mathrm{w} \mid \mathrm{w}$ contains at least two 0 s and at most four 1 s$\}$
h. $\{\mathrm{w} \mid \mathrm{w}$ does not contain 101 or 111$\}$
i. the set $\{\varepsilon\}$
j. the empty set

