Notes for Wednesday, June 2nd

Recall: $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$. A_{TM} s Turing-recognizable (via Universal TM) but not decidable (via diagonalization technique).

Now we ask the question: is there a language that is not even Turing-recognizable.

Suppose $\overline{A_{TM}}$ is also Turing-recognizable.

Theorem: L is decidable iff L and \overline{L} are Turing recognizable

Proof:

 (\Rightarrow) All decidable languages are Turing-recognizable, so L is Turing-recognizable. If L is decidable, that automatically implies that L is Turing-recognizable. If L is decidable, \overline{L} is also decidable (decidable languages are closed under complement), so \overline{L} is also Turing-recognizable.

(\Leftarrow) If L and \bar{L} are Turing-recognizable, then there exist M_1 and M_2 such that $L(M_1) = L$ and $L(M_2) = \bar{L}$. We can construct a decider TM for L:

"on input w:

run M_1 and M_2 on w by alternating one step at a time

If M_1 accepts, M accepts If M_2 accepts, M rejects"

This way, M is guaranteed to half on all inputs (because the string is either in L or \overline{L} , and because M_1 and M_2 are run in parallel, it doesn't matter if one of them goes into an infinite loop). Thus, L is decidable.

Corollary: A_{TM} is not Turing-recognizable.

(If it were, A_{TM} itself would be decidable by the theorem, which is a contradiction) This is the Chomsky hierarchy of problems:

 $\overline{A_{TM}}$ is undecidable; are there more such problems?

Suppose you want to show that B is undecidable, and you know that A is undecidable. If you can use B to solve A (B is a decider for A), then A is decidable and this is a contradiction.

In this way, you can reduce an undecidable problem A to another problem B. If B is decidable, then there is a contradiction.

The notion is to use the new problem B to solve the original problem A

Notation: A is reducible to B if you can use B to solve A. We write $A \leq B$.

Suppose $B \leq C$, and $C \leq D$. Then we can write $A \leq B \leq C \leq D$.

Let $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem: $A_{TM} \leq E_{TM}$ (this E_{TM} is undecidable, by reduction)

Proof: Assume E_{TM} is decidable. Then, there exists a decider TM M_E such that $L(M_E) = E_{TM}$.

Construct a decided for A_{TM} as follows:

"on input $\langle M, w \rangle$,

- 1. Build TM M_1 on input x:
 - (a) If $x \neq w$, reject
 - (b) If x = w, then simulate M on w, accept if M accepts
 - (then $L(M_1) = \{\{w\} \text{ if } M \text{ accepts } w, \emptyset \text{ otherwise}\}$)
- 2. Feed M_1 to M_E
- 3. Accept $\langle M, w \rangle$ if M_E rejects $\langle M_1 \rangle$; Reject $\langle M, w \rangle$ if M_E accepts $\langle M_2 \rangle$."

This is a contradiction, so E_{TM} is undecidable.