Notes for Wednesday, June 2nd

Recall: $A_{T M}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\} . A_{T M} \mathrm{~s}$ Turing-recognizable (via Universal TM) but not decidable (via diagonalization technique).

Now we ask the question: is there a language that is not even Turing-recognizable.
Suppose $\overline{A_{T M}}$ is also Turing-recognizable.
Theorem: L is decidable iff L and \bar{L} are Turing recognizable
Proof:
(\Rightarrow) All decidable languages are Turing-recognizable, so L is Turing-recognizable. If L is decidable, that automatically implies that L is Turing-recognizable.If L is decidable, \bar{L} is also decidable (decidable languages are closed under complement), so \bar{L} is also Turing-recognizable.
(\Leftarrow) If L and \bar{L} are Turing-recognizable, then there exist M_{1} and M_{2} such that $L\left(M_{1}\right)=L$ and $L\left(M_{2}\right)=$ \bar{L}. We can construct a decider TM for L :
"on input w :
run M_{1} and M_{2} on w by alternating one step at a time
If M_{1} accepts, M accepts If M_{2} accepts, M rejects"
This way, M is guaranteed to half on all inputs (because the string is either in L or \bar{L}, and because M_{1} and M_{2} are run in parallel, it doesn't matter if one of them goes into an infinite loop). Thus, L is decidable.

Corollary: $\overline{A_{T M}}$ is not Turing-recognizable.
(If it were, $A_{T M}$ itself would be decidable by the theorem, which is a contradiction)
This is the Chomsky hierarchy of problems:

$\overline{A_{T M}}$ is undecidable; are there more such problems?
Suppose you want to show that B is undecidable, and you know that A is undecidable. If you can use B to solve A (B is a decider for A), then A is decidable and this is a contradiction.

In this way, you can reduce an undecidable problem A to another problem B. If B is decidable, then there is a contradiction.

The notion is to use the new problem B to solve the original problem A
Notation: A is reducible to B if you can use B to solve A. We write $A \leq B$.
Suppose $B \leq C$, and $C \leq D$. Then we can write $A \leq B \leq C \leq D$.
Let $E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\emptyset\}$.
Theorem: $A_{T M} \leq E_{T M}$ (this $E_{T M}$ is undecidable, by reduction)
Proof: Assume $E_{T M}$ is decidable. Then, there exists a decider TM M_{E} such that $L\left(M_{E}\right)=E_{T M}$.
Construct a decided for $A_{T M}$ as follows:
"on input $\langle M, w\rangle$,

1. Build TM M_{1} on input x :
(a) If $x \neq w$, reject
(b) If $x=w$, then simulate M on w, accept if M accepts
(then $L\left(M_{1}\right)=\{\{w\}$ if M accepts w, \emptyset otherwise $\}$)
2. Feed M_{1} to M_{E}
3. Accept $\langle M, w\rangle$ if M_{E} rejects $\left\langle M_{1}\right\rangle$; Reject $\langle M, w\rangle$ if M_{E} accepts $\left\langle M_{2}\right\rangle$."

This is a contradiction, so $E_{T M}$ is undecidable.

