
Notes for Friday, May 7DH Last time, we looked at a few examples of grammars:
L1 = {0n1n|1 ≥ 0}, and grammar G1 :

S → 0S1|ε

and L2 = {w|w contains an even number of 0’s}, and grammar G2 :

S → A0A0S|A

A→ 1A|ε

We call these Context-Free Grammars (CFG’s). Why “context-free?”
Consider a “Context-Sensitive Grammar.” In this case, “context” refers to surrounding variables. So

any example of a Context-Sensitive Grammar might be

0A1→ 00A1|01

1A0→ 11A0|10

Recall that the formal definition of a CFG is G = (V, Σ, R, S), with V the variables, Σ the terminals (or
alphabet), R the rules, and S the start symbol. The rules are of the form V → (V ∪ Σ)∗ and V ∩ Σ = ∅.

So a formal definition of G1 above would be G1 = ({S}, {0, 1}, R, S) with R = {S → 0S1, S → ε}.

Example: CFG for assignment statements in a programming language (for example, x = a + b × c. We
can construct a CFG GA with rules:

S → V AR = EXPR

V AR→ a|b|c| · · · |z

EXPR→ EXPR + EXPR|EXPR× EXPR|V AR

We can create a parse tree for the string x = a + b× c :
S

VAR

x

= EXPR

EXPR

VAR

a

+ EXPR

EXPR

VAR

b

× EXPR

VAR

c
The leaves of the tree correspond to the string x = a + b × c, as expected. This tree captures what we

would expect with order of operations: it multiplies first, then adds, then assigns with the equals.
There is a different parse tree for this string:

1

S

VAR

x

= EXPR

EXPR

EXPR

VAR

a

+ EXPR

VAR

b

× EXPR

VAR

c

This is also a valid parse tree, but this one does not follow the rules for evaluating an expression.

The two parse trees above have two different meanings. This is an example of an ambiguous grammar:
an ambiguous grammar G is one for which there exists are least two parse trees for some w ∈ L(G).

An ambiguous grammar is a bad thing in terms of writing a compiler for a programming language. We
want to stay away from ambiguous grammars.

Some examples in English: “HOMER HIT THE GUY WITH THE BEER BOTTLE.” There are two
different ways of interpreting this:

Homer hit whom? The guy with the bottle
OR
Homer hit some guy with what? A bottle.
Another example: “THE GIRL TOUCHES THE BOY WITH THE FLOWER;” and “TIME FLIES

LIKE AN ARROW, FRUIT FLIES LIKE A BANANA” (here, “flies” is interpreted as both a verb and a
noun, and “like” is interpreted as an adjective or a verb.)

So how do we get rid of an ambiguity?
We can fix GA. We want to multiply first, then add:

S → V AR = EXPR

V AR→ a|b|c| · · · |z

EXPR→ EXPR + TERM |TERM

TERM → TERM × V AR|V AR

A parse tree for x = a + b× c with this grammar:

2

S

VAR

x

= EXPR

EXPR

TERM

VAR

a

+ TERM

TERM

VAR

b

× VAR

c

The question arises: can you always convert an ambiguous grammar to an unambiguous one? In fact,
there are examples of languages that will inherently be ambiguous.

Example: := {0i1j2k|i = j or j = k}.
The string 0n1n2n can always be parsed as an equal number of 0’s and 1’s, OR as an equal number of

1’s and 2’s.
Programming languages are made to avoid this inherent ambiguity problem.

Now we ask the question: What is the relationship between CFLs (context-free languages) and regular
languages? Recall:

REG = {L|L is regular}

CFL = {L = L(G) for some CFG G}

Is one a subset of the other? Are they equal?

The counterexample 0n1n shows that they are not equal.
What about REG ⊂ CFL? Are CFLs more powerful? Can you always convert a DFA into a grammar?
Example DFA M :

qe qodd

1

0

1

0

L(M) = {w|w contains an even number of 0’s}.
Can we create a CFG GM that mimics M? If we think of this relationship between variables and states:

S ↔ qe and A↔ qodd, then we create the rules:

S → 1S|0A|ε

A→ 1A|0S

which follows the transition rules of the DFA above (ε corresponds to an accept state, because it terminates
the string).

This is different from the example G2 at the very beginning of these notes. It is the same language, but
uses different approaches.

3

Can we generalize this construction? Is there anything special about M that allowed us to do this? The
answer is no: this construction should be valid for any DFA. The fuller proof will be given next time.

This construction allows us to conclude that the regular languages are a proper subset of CFLs!

4

