
Notes for Monday, May 17th
(Notes supplementary to slides) Contstruction of a CFG to PDA follows this construction:

q0 q1 q2

qACC

ε, ε→ $ ε, ε→ S
ε, A→ w
...
a, a→ ε

ε, $→ ε

In PDA to CFG proof, we can get the PDA into the required form by splitting things of the form
a, b→ c

Into
a, b→ ε ε, ε→ c

and similarly
ε, ε→ ε

into
ε, ε→ c ε, c→ ε

(diverging from the slide discussion now)
Consider the example L = {0n1n0n|n ≥ 0}. Can we make a CFG or PDA for L? If we had two stacks it

would be easy. The attempted grammar
S → 0A1B0|ε
A→ 0A1|ε
B → 1B0|ε

doesn’t work. It turns out that L is not a CFL. To prove this, we’d need a pumping lemma for CFLs!
An example of how this pumping lemma would work: L = {0n1n|n ≥ 0}. We have already discussed the

grammar for this in class:
S → 0S1|ε

It has one variable, S. So, |V | = 1. A parse tree of height 2 would have the longest path have three nodes
(with a leaf as a terminal), so there are two variables in the path. Since there is only one variable on V, the
path will repeat a variable due to pigeonhole. Hence, we can change the size of the tree!

For the string w = 01, the tree is
S

0 S

ε

1

We may replace the bottom S by the top S and “pump up” to get the string 0212...
S

0 S

0 S

ε

1

1

1

...or again for 0313 :
S

0 S

0 S

0 S

ε

1

1

1

and so on. We may also “pump down” by replacing the upper S by the lower S to get the string 0010 = ε :
S

ε
This outlines how the pumping lemma for CFLs works. Next time, a formal proof is given.

2

