Notes for Friday, April 30th

We have previously looked at these examples: $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $L_{2}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Now we will look at more examples.

Example: show that $L_{P}=\left\{0^{n} \mid n\right.$ is prime $\}$ is not regular. (Remark: this shows that a language with a single symbol in its alphabet doesn't have to be simple)

Proof (by contradiction):

1. Assume L_{P} is regular
2. There exists a p as in the Pumping Lemma
3. Choose $s \in L_{P}$ such that $|s| \geq p$, so $s=0^{k}$ with k prime, $k \geq p+2$ (we use $p+2$ rather than p to show a result later. We may always find such a k because there are infinitely many primes.)
4. For any x, y, z such that $s=x y z,|y| \geq 1$ and $|x y| \leq p$.
5. We need to choose i such that $x y^{i} z \notin L_{P}$. What does this mean? We want $x y^{i} z=0^{m}$ such that m is not prime, or that $m=n_{1} \times n_{2}$ with $n_{1}, n_{2} \geq 2$. Hence, we want $\left|x y^{i} z\right|=|x z|+i|y|=n_{1} n_{2}$ for such n_{1}, n_{2}.
Choose $i=|x z|$. Then, $\left|z y^{i} z\right|=|x z|+|x z||y|=|x z|(1+|y|)$. We have $n_{1}=|x z|$ and $n_{2}=1+|y|$. Notice that $|y| \geq 1$, so $n_{2} \geq 2$. Also, $|z y| \leq p$ and $|x y z| \geq p+2$ by the choice of s and the assertions of the Pumping Lemma, so $|z| \geq 2$, or $|x z|=n_{1} \geq 2$, as desired. We have shown that for our choice $i=|x z|,\left|x y^{i} z\right|$ is not prime and thus $s \notin L_{P}$, which is a contradiction.

There are some more useful tricks.
Example: Show that $L_{3}=\left\{w \mid w \in\{0,1\}^{*}\right.$ and w contains an equal number of 0 s and 1 s$\}$ is not regular.
We could prove it like we proved L_{1} is not regular, using the same string. Or, we could notice that $L_{3} \cap 0^{*} 1^{*}=L_{1}$. If L_{3} were regular, by the closure properties of regular languages, the intersection of the two regular languages L_{3} and $0^{*} 1^{*}$ would be regular, but this intersection $\left(L_{1}\right)$ is not regular, which is a contradiction. Hence, L_{3} is not regular.

Example: (Language was also called "Distinct" in lecture): Show that $L=\left\{w \mid w=x_{1} \# x_{2} \# \cdots \# x_{k}, k \geq\right.$ $0, x_{i} \in 1^{*}, x_{i} \neq x_{j}$ for $\left.i \neq j\right\}$. (A collection of strings that have an unequal number of 1 s)

Assume L is regular. Then, $\bar{L} \cup 1^{*} \# 1^{*}=\left\{1^{n} \# 1^{n}\right\}$, but this result is not regular (proof is similar to that for language L_{1}), so by the closure properties of languages this is a contradiction. Hence, L is not regular.

In particular, we may use the that regular languages are closed under complement, intersection, union, concatenation, and star.

