Proof of the Pumping Lemma

The language L is regular, so there exists a DFA M such that $L=L(M)$. Say M has p states, $\left\{q_{1}, \ldots, q_{p}\right\}$. We are also given input string $s \in L$ with $s=s_{1} s_{2} \cdots s_{n}(n=|s| \geq p)$.
M on input s (accepts):

$$
r_{1} \xrightarrow{s_{1}} r_{2} \xrightarrow{s_{2}} r_{3} \xrightarrow{s_{3}} \cdots \xrightarrow{s_{p-1}} r_{p} \xrightarrow{s_{p}} r_{p+1} \xrightarrow{s_{p+1}} \cdots \xrightarrow{s_{n}} r_{n+1}
$$

Where r_{n+1} is an accept state. (Remark: the r 's are not necessarily unique $-r_{l}$ and r_{m} may refer to the same q_{p}.)
M went through at least $p+1$ states, but has only p distinct states. By pigeonhole principle, some state repeats (there exists a cycle). This implies that there exists some j, k with $j \neq k$ such that $r_{j}=r_{k}$. We also know that $k \leq p+1$.

Thus, M looks like this on input s :

$$
r_{1} \longrightarrow s_{1} r_{2} \longrightarrow s_{2} r_{3} \longrightarrow s_{3} \cdots s_{j-1} r_{j}=r_{k} \longrightarrow s_{k} r_{k+1} \longrightarrow \cdots \xrightarrow[n]{ } r_{n+1}
$$

Let the input before the loop $s_{1} s_{2} \cdots s_{j-1}=x$, the input in the loop $s_{j} \cdots s_{k-1}=y$, and teh input after the loop $s_{k} \cdots s_{n}=z$. By assumption, $s=x y z \in L(M)$.

We have shown that

1. For all $i \geq 0, x y^{i} z \in L$ (because we may exploit the loop)
2. $|y| \geq 1$ (because j, k are distinct)
3. $|x y| \leq p$ (because $|x y|=k-1$ and $k \leq p+1$.)

This is really useful to show that certain languages are not regular.
Example: Given $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, show that L is not regular.
Proof (by contradiction):

1. Assume L is regular
2. There exists a p (pumping length) from pumping lemma
3. Choose $s=0^{p} 1^{p}(s$ satisfies $|s| \geq p$ because $|s|=2 p)$
4. For any x, y, z such that $s=x y z,|y| \geq 1$ and $|x y| \leq p$, so y contains only $0 s$
5. Choose some i such that $x y^{i} z \notin L$. Here, we choose $i=2 . x y^{2} z=x y y z=0^{p+|y|} 1^{p}$, which is not in L because $|y| \neq 0$. This contradicts the pumping lemma, which implies that L is not regular.
Example: Given $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$, show L is not regular.
Proof (by contradiction):
6. Assume L is regular
7. There exists a p (pumping length) from pumping lemma
8. Choose $s=0^{p} 10^{p}$.
9. For any x, y, z such that $s=x y z$ and $|y| \geq 1$ and $|x y| \leq p$, so y contains only $0 s$.
10. Choose some i such that $x y^{i} z \notin L$. Here, we choose $i=2$. $x y^{2} z=x y y z=0^{p+|y|} 10^{p}$, but $|y| \neq 0$ so this string is not in L, contradicting the pumping lemma. Thus, L is not regular.
(The example $0^{p} 0^{p}$ will not work because it may still remain in the language after pumping in step 5)
