Proof of the Pumping Lemma

The language L is regular, so there exists a DFA M such that L = L(M). Say M has p states, $\{q_1, \ldots, q_p\}$. We are also given input string $s \in L$ with $s = s_1 s_2 \cdots s_n \ (n = |s| \ge p)$.

M on input s (accepts):

$$r_1 \xrightarrow{s_1} r_2 \xrightarrow{s_2} r_3 \xrightarrow{s_3} \cdots \xrightarrow{s_{p-1}} r_p \xrightarrow{s_p} r_{p+1} \xrightarrow{s_{p+1}} \cdots \xrightarrow{s_n} r_{n+1}$$

Where r_{n+1} is an accept state. (Remark: the r's are not necessarily unique – r_l and r_m may refer to the same q_n .)

M went through at least p+1 states, but has only p distinct states. By pigeonhole principle, some state repeats (there exists a cycle). This implies that there exists some j,k with $j \neq k$ such that $r_j = r_k$. We also know that $k \leq p+1$.

Thus, M looks like this on input s:

$$r_1 \xrightarrow{s_1} r_2 \xrightarrow{s_2} r_3 \xrightarrow{s_3} \cdots \xrightarrow{s_{j-1}} r_j = r_k \xrightarrow{s_k} r_{k+1} \xrightarrow{s_k} \cdots \xrightarrow{s_n} r_{n+1}$$

Let the input before the loop $s_1s_2\cdots s_{j-1}=x$, the input in the loop $s_j\cdots s_{k-1}=y$, and teh input after the loop $s_k\cdots s_n=z$. By assumption, $s=xyz\in L(M)$.

We have shown that

- 1. For all $i \geq 0$, $xy^iz \in L$ (because we may exploit the loop)
- 2. $|y| \ge 1$ (because j, k are distinct)
- 3. $|xy| \le p$ (because |xy| = k 1 and $k \le p + 1$.)

This is really useful to show that certain languages are not regular.

Example: Given $L = \{0^n 1^n | n \ge 0\}$, show that L is not regular. Proof (by contradiction):

- 1. Assume L is regular
- 2. There exists a p (pumping length) from pumping lemma
- 3. Choose $s = 0^p 1^p$ (s satisfies |s| > p because |s| = 2p)
- 4. For any x, y, z such that s = xyz, $|y| \ge 1$ and $|xy| \le p$, so y contains only 0s
- 5. Choose some i such that $xy^iz \notin L$. Here, we choose i=2. $xy^2z=xyyz=0^{p+|y|}1^p$, which is not in L because $|y|\neq 0$. This contradicts the pumping lemma, which implies that L is not regular.

Example: Given $L = \{ww | w \in \{0, 1\}^*\}$, show L is not regular. Proof (by contradiction):

- 1. Assume L is regular
- 2. There exists a p (pumping length) from pumping lemma
- 3. Choose $s = 0^p 10^p$.
- 4. For any x, y, z such that s = xyz and $|y| \ge 1$ and $|xy| \le p$, so y contains only 0s.
- 5. Choose some i such that $xy^iz \notin L$. Here, we choose i=2. $xy^2z=xyyz=0^{p+|y|}10^p$, but $|y|\neq 0$ so this string is not in L, contradicting the pumping lemma. Thus, L is not regular.

(The example 0^p0^p will not work because it may still remain in the language after pumping in step 5)