Notes for Friday, April 23rd

To keep in mind:
DFA:
$q_{i} \xrightarrow{a} q_{j}$
maps a single state to a single state
NFA:
$q_{i} \xrightarrow{a}\{-,-,-\}$
maps a single state to a set of states
NFA \rightarrow DFA:
$\mathrm{DFA}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$Q=\operatorname{Pow}\left(Q^{\prime}\right)$
Transition function seems like it's going from a set of states, but it's just notation. It may be useful to imagine quotes:
" $\left\{q_{1}, q_{2}\right\}^{\prime \prime} \rightarrow$ " $\{\quad\}^{\prime \prime}$.
We have learned two ways to describe languages: DFAs and NFAs (and we have proved they are the same).

Last time, we proved languages are closed under $\cup, \circ, *$.
Suppose we use $\cup, \circ, *$ to describe languages. Some examples (we use $\Sigma=\{0,1\}=0 \cup 1$.):

1. $0 \cup 1=\{0,1\}$.
2. $(0 \cup 1) \circ 0=\{00,10\}$
3. $(0 \cup 1)^{*}=\{0,1\}^{*}\left(\right.$ like $\left.\Sigma^{*}\right)$
4. $(0 \cup 1)^{*} 0=\{w \mid w$ ends in 0$\}$
5. $((0 \cup 1)(0 \cup 1))^{*}=\{w \| w \mid$ is even $\}$
6. $\Sigma^{*} 1 \Sigma=\{w \mid$ second to last symbol of w is 1$\}$
7. $\Sigma^{*} \emptyset=\left\{w \mid \exists x, y\right.$ such that $w=x y$ and $\left.x \in \Sigma^{*}, y \in \emptyset\right\}=\emptyset$
8. $A \emptyset=\emptyset$
9. $\emptyset^{*}=\{\varepsilon\}$ (because k can be 0 in the definition of $*$)
10. $\varepsilon^{*}=\{\varepsilon\}$

Sets of strings described by these operations are called Regular Expressions.
Definition: R is a regular expression IFF
R is a string over the alphabet $\Sigma \cup\{(),, \varepsilon, \emptyset, \cup, *\}$ (we often omit o because we may write $a b$ instead of $a \circ b$)

AND
R is

1. $a \in \Sigma \mathrm{OR}$
2. $\varepsilon \mathrm{OR}$
3. \emptyset OR
4. $R_{1} \cup R_{2}$, with R_{1}, R_{2} regular expressions OR
5. $R_{1} R_{2}$, with R_{1}, R_{2} regular expressions OR
6. R_{1}^{*}, with R_{1} a regular expression

Parentheses are used for precedence. Without them, $*>\circ>\cup$.
The language of a regular expression, $L(R)$, is the set of strings defined by R.
Examples:

1. $L(R)=\{w \mid w$ contains exactly 20 's $\}$:
$R=1^{*} 01^{*} 01^{*}$
2. $L(R)=\{w \mid w$ contains at least 20 's $\}$:
$R=\Sigma^{*} 0 \Sigma^{*} 0 \Sigma^{*}$
3. $L(R)=\{w \mid w$ contains even number of 0 's $\}$: $R=1^{*}\left(1^{*} 01^{*} 01^{*}\right)$ or $1^{*}\left(01^{*} 01^{*}\right)$
4. $L(R)=\{w \mid w$ does not contain 00$\}$

Consider the "opposite": $L\left(R^{\prime}\right)=\{w \mid w$ contains 00$\}$:
$R^{\prime}=\Sigma^{*} 00 \Sigma^{*}$
Ideally, we'd like $R=\Sigma^{*}-\Sigma^{*} 00 \Sigma^{*}$, but this is not allowed.
It may help to make a DFA for R :

1 NFA diagram:

What does not containg 00 mean?
Answer: any 0 must be followed by 1 , unless it is the final 0
$\left(011^{*}\right)^{*}$ or $\left(011^{*}\right)^{*} 0$
we are still missing the 1^{*} case:
$\left.\left(1^{*}\left(011^{*}\right)^{*}\right) \cup\left(1^{*}\left(011^{*}\right)^{*}\right) 0\right)$
or alternatively $1^{*}\left(011^{*}\right)^{*}(\varepsilon \cup 0)$
The regular expression seems to capture the dynamics of the computation done by the DFA.
Question: are regular expressions and DFAs/NFAs equivalent?
Final example: $L(R)=\{w \mid w$ is a valid identifier in C$\}$
$R=\left(A \cup B \cup \cdots \cup Z \cup a \cup b \cup \cdots \cup z \cup __{-}\right)\left(A \cup B \cup \cdots \cup Z \cup a \cup b \cup \cdots \cup z \cup _\cup 0 \cup 1 \cup \cdots \cup 9\right)^{*}$.
Regular expressions are useful to describe the general rules.

