CSE 322

Exam Reviews

Basic Concepts

- Formal Languages
- Alphabet (Σ)
- String (Σ^{*})
- Length (|x|)
- Empty String (ε)
- Empty Language (\varnothing)
- Language/String Operations
- "Regular" Operations:
- Union (U)
- Concatenation (•)
- (Kleene) Star (*)
- Other:
- Intersection
- Complement
- Reversal
- Shuffle

Finite Defns of Infinite Languages

- English, mathematical
- DFAs
- States
- Start states
- Accept states
- Transitions (δ function)
- M accepts $w \in \Sigma^{*}$
- M recognizes $L \subseteq \Sigma^{*}$
- Nondeterminism
- NFAs
- Transitions (δ relation)
- Missing out-edges
- Multiple out-edges
- ε-moves
-N accepts $\mathrm{w} \in \Sigma^{*}$
- N recognizes $L \subseteq \Sigma^{*}$
- Regular Expressions
$-\varnothing, \varepsilon, a \in \Sigma, \cup, \cdot{ }^{*},()$
- GNFAs

Key Results, Constructions, Methods

- L is regular iff it is:
- Recognized by a DFA
- Recognized by a NFA
- Recognized by a GNFA
- Defined by a Regular Expr

Proofs:
GNFA \rightarrow Reg Expr
(Kleene/Floyd/Warshall: $R_{i k} R_{k k}{ }^{*} R_{k j}$)
Reg Expr \rightarrow NFA
(join NFAs w/ ε-moves)
NFA \rightarrow DFA
(subset construction)
DFA \rightarrow GNFA
(special case)

- The class of regular languages is closed under:
- Regular ops: union, concatenation, star
- Also: intersection, complementation, (\& reversal, prefix, no-prefix, ...)
- NOT closed under \subseteq, \supseteq
- Also: Cross-product construction (union, ...)

Applications

- "globbing"
- Ipr *.txt
- pattern-match searching:
- grep "Ruzzo.*terrific" *.txt
- Compilers:
- Id ::= letter (letter|digit)*
- Int ::= digit digit*
- Float ::=
d^{d}. $\mathrm{d}^{*}\left(\varepsilon \mid E d d^{*}\right)$
- (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API's, etc., etc.

