CSE 322

Exam Reviews

Basic Concepts

- Formal Languages
 - Alphabet (Σ)
 - String (Σ^*)
 - Length (|x|)
 - Empty String (ε)
 - Empty Language (∅)

- Language/String Operations
 - "Regular" Operations:
 - Union (∪)
 - Concatenation (•)
 - (Kleene) Star (*)
 - Other:
 - Intersection
 - Complement
 - Reversal
 - Shuffle
 - •

Finite Defns of Infinite Languages

- English, mathematical
- DFAs
 - States
 - Start states
 - Accept states
 - Transitions (δ function)
 - M accepts w ∈ Σ*
 - M recognizes L $\subseteq \Sigma^*$

- Nondeterminism
- NFAs
 - Transitions (δ relation)
 - Missing out-edges
 - Multiple out-edges
 - ε-moves
 - N accepts w ∈ Σ^*
 - − N recognizes L \subseteq Σ *
- Regular Expressions
 - $-\varnothing$, ϵ , $a \in \Sigma$, \cup , •, *,()
- GNFAs

Key Results, Constructions, Methods

- L is regular iff it is:
 - Recognized by a DFA
 - Recognized by a NFA
 - Recognized by a GNFA
 - Defined by a Regular Expr

Proofs:

```
GNFA \rightarrow Reg Expr
(Kleene/Floyd/Warshall: R_{ik} R_{kk}^* R_{kj})
```

Reg Expr → NFA

(join NFAs w/ ε-moves)

NFA → DFA

(subset construction)

DFA → GNFA

(special case)

- The class of regular languages is closed under:
 - Regular ops: union, concatenation, star
 - Also: intersection,
 complementation,
 (& reversal, prefix,
 no-prefix, ...)
- NOT closed under ⊆, ⊇
- Also: Cross-product construction (union, ...)

Applications

- "globbing"
 - Ipr *.txt
- pattern-match searching:
 - grep "Ruzzo.*terrific" *.txt

- Compilers:
 - Id ::= letter (letter|digit)*
 - Int ::= digit digit*

 - (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API's, etc., etc.

Non-Regular Languages

 Key idea: once M is in some state q, it doesn't remember how it got there.

```
E.g. "hybrids":if xy ∈ L(M) andx, x' both go to q, thenx'y ∈ L(M) too.
```

```
E.g. "loops":

if xyz \in L(M) and

x, xy both go to q, then

xy^iz \in L(M) for all i \ge 0.
```

- Cor: Pumping Lemma
- Important examples:

```
L_1 = \{ a^n b^n \mid n > 0 \}
L_2 = \{ w \mid \#_a(w) = \#_b(w) \}
L_3 = \{ ww \mid w \in \Sigma^* \}
L_4 = \{ ww^R \mid w \in \Sigma^* \}
L_5 = \{ balanced parens \}
```

 Also: closure under ∩, complementation sometimes useful:

$$- L_1 = L_2 \cap a^*b^*$$

PS: don't say "Irregular"

Context-Free Grammars

- Terminals, Variables/Non-Terminals
- Start Symbol S
- Rules →
- Derivations \Rightarrow , \Rightarrow *
- Left/right-most derivations
- Derivation trees/parse trees
- Ambiguity, Inherent ambiguity
- A key feature: recursion/nesting/matching, e.g.

$$S \rightarrow (S)S \mid \epsilon$$

Pushdown Automata

- States, Start state, Final states, stack
- Terminals (Σ), Stack alphabet (Γ)
- Configurations, Moves, ⊢, ⊢*, push/pop

Main Results

- Every regular language is a CFL
- Closure: union, dot, *, (Reversal; ∩ w/ Reg)
- Non-Closure: Intersection, complementation
- Equivalence of CFG & PDA
 - CFG ⊆ PDA : top-down(match/expand), bottom-up (shift/reduce)
 - PDA \subseteq CFG: A_{pq}
- Pumping Lemma & non-CFL's
- Deterministic PDA != Nondeterministic PDA

Important Examples

Some Context-Free Languages:

```
    - { a<sup>n</sup>b<sup>n</sup> | n > 0 }
    - { w | #<sub>a</sub>(w) = #<sub>b</sub>(w) }
    - { ww<sup>R</sup> | w ∈ {a,b}* }
    - balanced parentheses
    - "C", Java, etc.
```

Some Non-Context-Free Languages:

```
 \begin{array}{l} - \left\{ \, a^{n}b^{n}c^{n} \, \middle| \, n > 0 \, \right\} \\ - \left\{ \, w \, \middle| \, \#_{a}(w) = \#_{b}(w) = \#_{c}(w) \, \right\} \\ - \left\{ \, ww \, \middle| \, w \in \{a,b\}^{*} \, \right\} \\ - \, "C", \, Java, \, etc. \end{array}
```

Applications

- Programming languages and compilers
- Parsing other complex input languages
 - html, sql, ...
- Natural language processing/ Computational linguistics
 - Requires handling ambiguous grammars
- Computational biology (RNA)

Turing Machines & Decidability

• TMs

- States, Σ , δ , etc.
- 2-way, ∞, writable tape
- q_{acc}, q_{rej}; both halt
- Recognizer: halt for "yes",
 but may reject by looping
- Decider: always halts, yes/ no answer
- Church-Turing Thesis: this is as good a computer as any, wrt what is computable

- There are (many)
 problems that are not
 computable
 - About TMs: E.g., A_{TM} ,
 HALT_{TM}: recognizable but not decidable
 - About other systems: E.g., ambiguity of CFGs
 - About programs
- Main proof techniques: diagonalization, reduction

The big picture

Ability to specify and reason about abstract formal models of computational systems is an important life skill. Practice it.