Cocke-Kasami-Younger Parser

Suppose all rules of form $A \rightarrow BC$ or $A \rightarrow a$ (by mechanically transforming grammar)

Given
$$x = x_1...x_n$$
, want $M_{i,j}^A = \{1 \text{ if } (A \Rightarrow^* x_{i+1}...x_j) \text{ else } 0\}$

For j=2 to n M^{A} [j-1,j] = {1 if (A $\rightarrow x_{j}$ is a rule) else 0} for i = j-1 down to 1 M^{A} [i,j] = $\bigvee_{A \rightarrow BC, i < k < j} M^{B}$ [i,k] $\wedge M^{C}$ [k,j]

Xn

Time: O(n³)

And now for something completely different ...

CFGs beyond compilers

An RNA Structure

An RNA Computer! Sensor & On/Off Switch

L19 absent: Gene On

L19 present: Gene Off

A L19 (*rplS*) mRNA leader

	—		P1			
		TSS	D 2			
	-35 -10				RBS	Start
Bsu	TTGCAT.17. TAAGAT	.40.AAAACGAUGUUCCGCUC	UGCCGGUUUUUG	<mark>UGGC</mark> . <mark>CA</mark> AGAGCAUCI	JG.05. <mark>AGGAGU</mark> .	08. <mark>AUG</mark>
Bha	TTGTTC.17.TCTTCT	.17.AUUACGAUGUUCCGC <mark>UG</mark>	G. CAGGGGUAGAAG	. CUGUCAUGAGCAUCU	JG.06. <mark>AGGAGG</mark> .	11. <mark>AUG</mark>
Oih	TTGAAC.17. TATATT	.31.UAAAC <mark>GAUGUUC</mark> CGC <mark>UC</mark>	.UCCCAUACUU	GUUCAUGAGCAUU	AG.06. <mark>AGGAGU</mark> .	07. <mark>AUG</mark>
Bce	TTGCTA.18.TATGCT	.36.UUAACGAUGUUCCGC <mark>UG</mark>	. UAA . UUUAUUAAGACU.	. UUA . UAAGAGCAUCU	JG.05. <mark>AGGAGA</mark> .	09. <mark>AUG</mark>
Gka	TTGCCT.17.TATCAT	.38.AAAACGAUGUUCCGCUC	G. <mark>CAAUGA</mark> . AGAGA <mark>UC</mark>	<mark>AUUG</mark> G <mark>CA</mark> UGAACAUC	JG.04. <mark>AGGAGU</mark> .	08. <mark>AUG</mark>
Bcl	TTGTGC <mark>.17.</mark> TATGAT	.45.AUUACGAUAUUCCGCUC	CUGCAGUGU	. UGG . CAUGAAUGUCU	JG.06. <mark>AGGAGG</mark> .	10. <mark>AUG</mark>
Bac	ATGACA.17.GATAGT	.35.AUAACGAUGUUCCGCUC	. <mark>CA</mark> . AUAAAGAAAGUCUG	UG . CAAGAGCAUCU	JG.05. <mark>AGGAGU</mark> .	08. <mark>AUG</mark>
Lmo	TTTACA.17.TAACCT	.28.AUAAC <mark>GAUAUUC</mark> CGC <mark>UI</mark>	J. CAU UAUUAAU	. AUG . AAUGAAUGUUU	JG.05. <mark>AGGAGA</mark> .	07. <mark>AUG</mark>
Sau	TTGAAA.17. <mark>TAACAT</mark>	.23.AUCACUAUGAUCCGCUC	.CU AUAUAUUUGUCG.	<mark>AG</mark> G <mark>CA</mark> AGAACAUA	G.04. <mark>AGAGGA</mark> :	09. <mark>AUG</mark>
Cpe	TTAAAG.18. TAAACT	.08.GUACC <mark>GGCGGUC</mark> CUC <mark>UC</mark>	UCACAGAG	<mark>UGUG</mark> U <mark>UA</mark> AGAACGUC	A.17. <mark>AGGAGG</mark> .	08. <mark>AUG</mark>
Chy	TTGCAT . 17 . TATAAT	.09.UACCAAACGUUCCGCUC	G. GACAGGGGC	<mark>UC</mark> . <mark>CA</mark> UGAACGUGG	C.03. <mark>AGGAGG</mark> .	09. <mark>AUG</mark>
Swo	TTGAGA.17. <mark>TAAAAT</mark>	.16.AAAAAGGUGGUCCGC <mark>UC</mark> CGC		<mark>AAUG . UA</mark> UGAACACCI	JU.05. <mark>AGGAGG</mark> .	07. <mark>AUG</mark>
Ame	TTGCGG.17. TATAAT	.10.UUACGGGCGGUCCUCUZ	A. UACAGGA	. GUA . UAAGAACGUCI	JA.07. <mark>AGGAGG</mark> .	07. <mark>AUG</mark>
Dre	TTGCCC.17.TATAAT	.16.UUACGGACGGUCCGCUC	CCUCUGGGAA	. AGG . UAAGAACGUCU	JA.04. <mark>AGGAAG</mark> .	12. <mark>GUG</mark>
Spn	TTTACT . 17 . TAAACT	.28.AUACAGUUUAUCCGCUC	G. <mark>AGGA</mark> AGAU	<mark>UCCU . CA</mark> AGAU <mark>UGAC</mark> A	A.04. <mark>AGGAGA</mark> .	05. <mark>AUG</mark>
Smu	TTTACA.17.TACAAT	.26.AAACG <mark>GCUAAUC</mark> CGC <mark>UG</mark>	AG ACAGAGCA	<mark>CU</mark> .UAUGAUUAGU	A.04. <mark>AGGAGA</mark> .	07. <mark>AUG</mark>
Lpl	TTGCGT.18.TATTCT	.21.UUAACGAUGUUCCGC <mark>UC</mark>	ACCAGGUU	GU.CACGAAUGUC	G.04. <mark>AGGAAG</mark> :	09. <mark>AUG</mark>
Efa	TTTACA.17.TAAACT	.28.AUUACAAUAUUCCGCUC	. UGG . CA GAAG <mark>UG</mark>	A <mark>CCA . UA</mark> AGAAUAUU	JG.06. <mark>AGGAGA</mark> .	08.AUG
Ljo	TTTACA.17. <mark>TAAACT</mark>	.25.UUAUG <mark>GGUAUUC</mark> CGC <mark>U</mark> (G. <mark>GCAC</mark> AAG	<mark>GUGU</mark> UG <mark>A</mark> UGAAUGCC	;U.03. <mark>AGGAGA</mark> .	07. <mark>AUG</mark>
sth	TAGACA.17. <mark>TAAGAT</mark>	.29.UAACGGCUAAUCCGCUG	<mark>G. AGA . CA</mark> CAGAGGU <mark>UG</mark>	C <mark>UCU . UA</mark> AGAUUAGU	AA.03. <mark>AGGAGU</mark> .	08. <mark>AUG</mark>
Lac	TTAAAA.17. <mark>TTACTT</mark>	.39.UUAUG <mark>GGUAUUC</mark> CGC <mark>U</mark> (G. <mark>ACG</mark> CUGGUA	. CGUUG <mark>A</mark> UGAAUGCC	A.03. <mark>AGGAGA</mark> .	10. <mark>AUG</mark>
s_{py}	TTTACA.17. <mark>TAGAAT</mark>	.29.UUACG <mark>GCUAAUC</mark> CGC <mark>U</mark>	A. <mark>AG</mark> ACAAGUA	CU.UAAGAUUAGU	A.03. <mark>AGGAGA</mark> .	06. <mark>AUG</mark>
Lsa	TTTTAA <mark>.17.</mark> TAAAAT	.26.ACAACGAUAUUCCGCU	G. <mark>GCG</mark> CAAGA	. CGUUA <mark>A</mark> UGAAUAUCU	JG.06. <mark>AGGAGA</mark> .	07.AUG
Lsl	TTTACT.17.TATTTT	.24.AUAACGAUAUUCCGCUC	.CAACUG	GACAUGAAUGUC	G.04. <mark>AGGAAA</mark> .	07. <mark>AUG</mark>
Fnu	TTGACA.17. TAAAAT	. 12 . AAUUC <mark>GAUAUUC</mark> CGC <mark>UI</mark>	J. <mark>UAA</mark> UAAA	. UUA . AAUGAAUAUCU	JU.04. <mark>AGGAAG</mark> .	02. <mark>AUG</mark>

C B. Subtilis L19 mRNA leader switch?

A CFG for RNA

$$S \rightarrow LS | L$$
$$L \rightarrow "dFd" | s$$
$$F \rightarrow "dFd" | LS$$

"s" means unpaired; "dFd" means paired (Watson–Crick: *aFu* | *uFa* | *gFc* | *cFg* paren-like nesting) $S \Rightarrow LS \Rightarrow *LLLLLLS$ \Rightarrow LLLLLLL \Rightarrow ssLsssss \Rightarrow ssdFdsssss \Rightarrow ssddFddsssss ⇒ ssdddFdddsssss \Rightarrow . . . SSSSS SS

Actually, a Stochastic CFG

Associate *probabilities* with rules, e.g.:

$$S \rightarrow LS$$
 (p = 0.87)
 $S \rightarrow L$ (p = 0.13)

Now we can ask, not only

"Does S generate w?"

But also

"How likely is it?"

Cocke-Kasami-Younger Parser

Suppose all rules of form $A \rightarrow BC$ or $A \rightarrow a$ (by mechanically transforming grammar)

Given
$$x = x_1...x_n$$
, want $M_{i,j}^A = \{1 \text{ if } (A \Rightarrow^* x_{i+1}...x_j) \text{ else } 0\}$

For j=2 to n **X**₁ $M^{A}[j-1,j] = \{1 \text{ if } (A \rightarrow x_{i} \text{ is a rule}) \text{ else } 0\}$ for i = j-1 down to 1 $M^{A}[i,j] = \bigvee_{A \rightarrow BC, i < k < j} M^{B}[i,k] \land M^{C}[k,j]$

x₂

Time: $O(n^3)$

"Inside" Algorithm for SCFG

Suppose all rules of form $A \rightarrow BC$ or $A \rightarrow a$ (by mechanically transforming grammar)

Given
$$x = x_1...x_n$$
, want $M_{i,j}^A = p(A \Rightarrow^* x_{i+1}...x_j)$

For j=2 to n $M^{A}[j-1,j] = p(\text{ rule } A \rightarrow x_{j})$ for i = j-1 down to 1 $M^{A}[i,j] = \sum_{A \rightarrow BC, i < k < j} M^{B}[i,k] \times M^{C}[k,j] \times p(A \rightarrow BC)$ I.e., *probability* of A in M[i,j], instead of its *possibility*

B C i+1 k k+1 j

Time: $O(n^3)$

Weinberg, Barrick, Yao, Roth, Kim, Gore, Wang, Lee, Block, Sudarsan, Neph, Tompa, Ruzzo, Breaker. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. *Nucl. Acids Res.*, July 2007 35: 4809-4819.

Bottom Line

CFG technology is a *key tool* for RNA description, discovery and search

A very active research area

(Some call RNA the "dark matter" of the genome.)

Huge *compute hog*: results above represent hundreds of CPU-years; smart algorithms have a big impact (Recall the O(n³)...)

More?

Check out CSE 427/428: "Comp Bio"