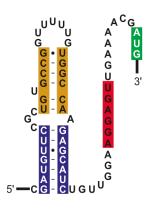
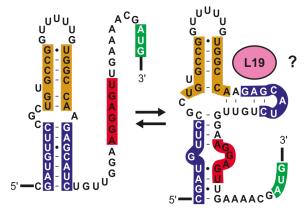

Cocke-Kasami-Younger Parser

Suppose all rules of form $A \rightarrow BC$ or $A \rightarrow a$ (by mechanically transforming grammar)

Given $x = x_1...x_n$, want $M_{i,j}^A = \{1 \text{ if } (A \Rightarrow^* x_{i+1}...x_j) \text{ else } 0\}$

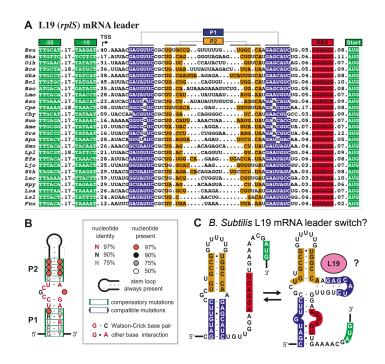
For j=2 to n $M^{A}[j-1,j] = \{1 \text{ if } (A \rightarrow x_{j} \text{ is a rule}) \text{ else } 0\}$ for i = j-1 down to 1 $M^{A}[i,j] = \bigvee_{A \rightarrow BC, i < k < j} M^{B}[i,k] \land M^{C}[k,j]$


Time: O(n³)


And now for something completely different ...

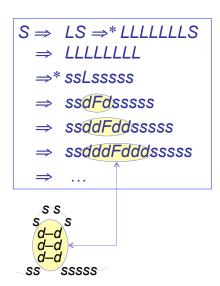
CFGs beyond compilers

An RNA Structure



An RNA Computer! Sensor & On/Off Switch

L19 absent: Gene On


L19 present: Gene Off

A CFG for RNA

$$S \rightarrow LS \qquad | L$$
 $L \rightarrow "dFd" \mid s$
 $F \rightarrow "dFd" \mid LS$

"s" means unpaired;
"dFd" means paired
(Watson-Crick:
 $aFu \mid uFa \mid gFc \mid cFg$
paren-like nesting)

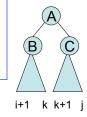
Actually, a Stochastic CFG

Associate probabilities with rules, e.g.:

$$S \rightarrow LS$$
 (p = 0.87)
 $S \rightarrow L$ (p = 0.13)

Now we can ask, not only
"Does S generate w?"
But also
"How likely is it?"

Cocke-Kasami-Younger Parser


Suppose all rules of form $A \rightarrow BC$ or $A \rightarrow a$ (by mechanically transforming grammar)

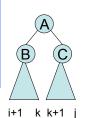
Given $x = x_1...x_n$, want $M_{i,j}^A = \{1 \text{ if } (A \Rightarrow^* x_{i+1}...x_j) \text{ else } 0\}$

For j=2 to n

$$M^{A}[j-1,j] = \{1 \text{ if } (A \rightarrow x_{j} \text{ is a rule}) \text{ else } 0\}$$

for i = j-1 down to 1
 $M^{A}[i,j] = \bigvee_{A \rightarrow BC, i < k < j} M^{B}[i,k] \wedge M^{C}[k,j]$

Time: O(n³)

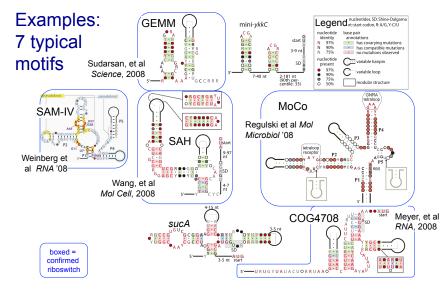

"Inside" Algorithm for SCFG

Suppose all rules of form $A \rightarrow BC$ or $A \rightarrow a$ (by mechanically transforming grammar)

Given
$$x = x_1...x_n$$
, want $M_{i,i}^A = p(A \Rightarrow^* x_{i+1}...x_i)$

For j=2 to n
$$M^{A}[j-1,j] = p(\text{ rule } A \rightarrow x_{j})$$
 for i = j-1 down to 1
$$M^{A}[i,j] = \sum_{A \rightarrow BC, \ i < k < j} M^{B}[i,k] \times M^{C}[k,j] \times p(A \rightarrow BC)$$
 I.e., probability of A in M[i,j], instead of its possibility

Time: O(n³)


Bottom Line

CFG technology is a *key tool* for RNA description, discovery and search

A very active research area

(Some call RNA the "dark matter" of the genome.)

Huge *compute hog*: results above represent hundreds of CPU-years; smart algorithms have a big impact (Recall the O(n³)...)

Weinberg, Barrick, Yao, Roth, Kim, Gore, Wang, Lee, Block, Sudarsan, Neph, Tompa, Ruzzo, Breaker. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. *Nucl. Acids Res.*, July 2007 35: 4809-4819.

More?

Check out CSE 427/428: "Comp Bio"