Turing Machines

Reading Assignment: Sipser Chapter 3.I, 4.2

4.I covers algorithms for decidable problems about DFA, NFA, RegExp, CFG, and PDAs, e.g. slides I7 \& I8 below. I've talked about most of this in class at one point or another, but skimming 4.I would probably be a good review.

Defn $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a<c}, q_{r a j}\right)$
Q: finite statest
Σ : f.x.te input alphabet set; ${ }^{4} \$$

$\delta: ~ Q \times \Gamma \rightarrow G \times \Gamma r\{L, R\}$ trang. Fion function
$q_{0} \in Q:$ stant state
$\left.q_{a n} \in Q: \frac{\text { acept stat }}{\text { rejectstat }}\right) \neq$
$q_{r i j} \in Q=\frac{1}{}$

Example

$$
L=\left\{w \# w \mid w \in\left\{0,1 \xi^{*}\right\}\right.
$$

1. check that there's a single \#
2. read, remember \& cross off left most incintter
3. scan to \# \& compare next, letter
4. If ok, cross it off
5. repent

- $Q=\left\{q_{1}, \ldots, q_{14}, q_{\text {accept }}, q_{\text {reject }}\right\}$,
- $\Sigma=\{0,1, \#\}$, and $\Gamma=\{0,1, \#, \mathrm{x}, \stackrel{\iota}{ }\}$.
- We describe δ with a state diagram (see the following figure).
- The start, accept, and reject states are $q_{1}, q_{\text {accept }}$, and $q_{\text {reject }}$.

By definition, no transitions out of $\mathrm{q}_{\mathrm{acc}} \mathrm{q}_{\mathrm{rej}}$;
M halts if (and only if) it reaches either
M loops if it never halts ("loop" might suggest "simple", but nonhalting computations may of course be arbitrarily complex)

M accepts if it reaches qacc,
M rejects by halting in $\mathrm{q}_{\text {rej }}$ or by looping
The language recognized by M :

$$
L(M)=\left\{w \in \Sigma^{*} \mid M \text { accepts } w\right\}
$$

L is Turing recognizable if $\exists \mathrm{TM}$ M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$
L is Turing decidable if, furthermore, M halts on all inputs

A key distinction!

Church-Turing Thesis

TM's formally capture the intuitive notion of "algorithmically solvable"

Not provable, since "intuitive" is necessarily fuzzy.
But, give support for it by showing that
(a) other intuitively appealing (but formally defined) models are precisely equivalent, and
(b) models that are provably different are unappealing, either because they are too weak (e.g., DFA's) or too powerful (e.g., a computer with a "solve-the-halting-problem" instruction).

Example: Multi-tape Turing Machines

$$
\delta: Q \times \Gamma^{k} \longrightarrow Q \times \Gamma^{k} \times\{\mathrm{L}, \mathrm{R}, \mathrm{~S}\}^{k}
$$

Nondeterministic Turing Machines

$$
\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times\{L, R\})
$$

Nondeterministic Turing Machines

$$
\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times\{L, R\})
$$

Accept if any path leads to $\mathrm{q}_{\text {accepi; }}$ reject otherwise, (i.e., all halting paths lead to qreject)

Simulating an NTM

Key issue: avoid getting lost on ∞ path
Key Idea: breadth-first search

tree arity $\leq|Q| \times|\Gamma| \times|\{L, R\}| \quad$ (3 in example)

Encoding things

$$
\begin{gathered}
\langle G\rangle= \\
(1,2,3,4)((1,2),(2,3),(3,1),(1,4)) \\
\Sigma=?
\end{gathered}
$$

 or $\quad<G>=\left(\left(A_{0}, A_{1}, \ldots\right),\left(a 0, a_{1}, \ldots\right),\left(A_{0} \rightarrow a_{0} A_{1}, A_{0} \rightarrow a_{1}, A_{1} \rightarrow a_{2} A_{1} a_{1}, \ldots\right), A_{0}\right)$
DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right) ; \quad<D>=(\ldots)$
TM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a}, q_{r}\right) ; \quad<M>=(\ldots)$

Decidability

Recall: L decidable means there is a TM recognizing L that always halts.

Example:
"The acceptance problem for DFAs"
$A_{D F A}=\{\langle D, w\rangle \mid D$ is a DFA \& $w \in L(D)\}$

Some Decidable Languages

The following are decidable:
$A_{D F A}=\{<D, w\rangle \mid D$ is a DFA \& $\left.w \in L(D)\right\}$
pf: simulate D on w
$A_{N F A}=\{\langle N, w\rangle \mid N$ is an NFA $\& w \in L(N)\}$
pf: convert N to a DFA, then use previous as a subroutine
$A_{R E X}=\{\langle R, w\rangle \mid R$ is a regular expr $\& w \in L(R)\}$
pf: convert R to an NFA, then use previous as a subroutine

EMPTY $_{\text {DFA }}=\{<D>\mid D$ is a DFA and $L(D)=\varnothing\}$
pf: is there no path from start state to any final state?

$$
\left.E Q_{D F A}=\{<A, B\rangle \mid A \& B \text { are DFAs s.t. } L(A)=L(B)\right\}
$$

pf: equal iff $L(A) \oplus L(B)=\varnothing$, and $x \oplus y=\left(x \cap y^{c}\right) \cup\left(x^{c} \cap y\right)$, and regular sets are closed under u, n, complement

$$
A_{C F G}=\{\langle G, w\rangle \mid \ldots\}
$$

pf: see book
EMPTY $_{\text {CFG }}=\{\langle G\rangle \mid \ldots\}$
pf: see book

$$
\mathrm{EQ}_{\mathrm{CFG}}=\{\langle\mathrm{A}, \mathrm{~B}\rangle \mid \mathrm{A} \& \mathrm{~B} \text { are CFGs s.t. } \mathrm{L}(\mathrm{~A})=\mathrm{L}(\mathrm{~B})\}
$$

This is NOT decidable

FIGURE 4.10
The relationship among classes of languages

The Acceptance Problem for TMs

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } T M \& w \in L(M)\}
$$

Theorem: ATM is Turing recognizable
Pf: It is recognized by a TM U that, on input <M,w>, simulates
M on w step by step. U accepts iff M does.

> U is called a Universal Turing Machine (Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

The Set of Languages in Σ^{*} is Uncountable

Suppose they were List them in order

Define L so that $w_{i} \in L \Leftrightarrow w_{i} \notin L_{i}$

Then L is not in the list
Contradiction

	wi	w^{2}	w^{2}	w	Ws	w,	
L	0	0	0	0	0	0	
L_{2}	1	1	1	1	1	1	
L_{3}	0	1	0	1	0	1	
L	0	I	0	0	0	0	...
L	1	1	1	0	0	0	
L	1	1	1	1	0	1	
\vdots !							
L	1	0	1	1	1	0	...

"Most" languages are neither Turing recognizable nor Turing decidable

Proof idea:
" $\left\rangle\right.$ " maps TMs into Σ^{*}, a countable set, so the set of
TMs, and hence of Turing recognizable languages is also countable;Turing decidable is a subset of Turing recognizable, so also countable. But by the previous result, the set of all languages is uncountable.

A specific non-Turingrecognizable language

Let M_{i} be the TM encoded by w_{i}, i.e. $\left\langle M_{i}\right\rangle=w_{i}$
($M_{i}=$ some default machine, if W_{i} is an illegal code.)
i, j entry $=\mathrm{I} \Leftrightarrow \mathrm{M}_{\mathrm{i}}$ accepts w_{i}
$L_{D}=\left\{w_{i} \mid i, i\right.$ entry $\left.=0\right\}$
Then L_{D} is not recognized by any TM

	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}
$\left\langle M_{1}\right\rangle$	0	0	0	0	0	0
$\left\langle M_{2}\right\rangle$	1	1	1	1	1	1
$\left\langle M_{3}\right\rangle$	0	1	0	1	0	1
$\left\langle M_{4}\right\rangle$	0	1	0	0	0	0
$\left\langle M_{5}\right\rangle$	1	1	1	0	0	0
$\left\langle M_{6}\right\rangle$	0	1	0	0	0	1
	\vdots					

L_{D}	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	\ldots

Theorem: The class of Turing recognizable languages is not closed under complementation.
Proof:
The complement of D , is Turing recognizable:
On input w_{i}, run $\left\langle M_{i}\right\rangle$ on $w_{i}\left(=\left\langle M_{i}\right\rangle\right)$; accept if it does. E.g. use a universal TM on input $\left\langle M_{i},<M_{i} \gg\right.$
E.g., in previous example, D^{c} might be $L\left(M_{6}\right)$

Theorem: The class of Turing decidable languages is closed under complementation.

Proof Idea:
Flip qaccept, qreject, (just like we did with DFAs)

The Acceptance Problem for TMs

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } T M \& w \in L(M)\}
$$

Theorem: ATM is Turing recognizable
Pf: It is recognized by a TM U that, on input <M,w>, simulates
M on w step by step. U accepts iff M does.
U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

Atm is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } T M \& w \in L(M)\}
$$

Suppose it's decidable, say by TM H. Build a new TM D:
"on input <M> (a TM), run H on <M, <M>>; when it halts, halt \& do the opposite, i.e. accept if H rejects and vice versa"
D accepts <M> iff H rejects <M,<M>>
(by construction) iff M rejects $<M>\quad\left(H\right.$ recognizes $\left.A_{T M}\right)$

D accepts <D> iff D rejects <D> (special case)
Contradiction!

A sthoikic non-Turingble language

Then L_{D} is not recognized by any TM

L_{D}	1	0	1	1	1	0	\ldots

Decidable $\underset{\nrightarrow}{\subsetneq}$ Recognizable

Decidable $=$ Rec \cap co-Rec

L decidable iff both L

\& Lc are recognizable
Pf: (\Leftarrow) on any given input, dovetail (run in parallel) a recognizer for L with one for Lc; one or the other must halt \& accept, so you can halt \& accept/reject appropriately.
(\Rightarrow) : from above, decidable
 languages are closed under complement (flip acc/rej)

The Halting Problem

$$
\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid T M M \text { halts on input } w\}
$$

Theorem: The halting problem is undecidable

Proof:

Suppose TM R decides HALT ${ }_{\text {tm }}$. Consider S:

On input <M,w>, run R on it. If it rejects, halt \& reject; if it accepts, run M on w; accept/reject as it does.

Then S decides $A_{\text {Tм }}$, which is impossible. R can't exist.

Programs vs TMs

Everything we've done re TMs can be rephrased re programs From the Church-Turing thesis, we expect them to be equivalent, and it's not hard to prove that they are
Some things are perhaps easier with programs.
Others get harder (e.g., "Universal TM" is a Java interpreter written in Java;"configurations" etc. are much messier)
TMs are convenient to use here since they strike a good balance between simplicity and versatility
Hopefully you can mentally translate between the two; decidability/ undecidability of various properties of programs are obviously more directly relevant.

Programs vs TMs

Fix $\Sigma=$ printable ASCII
Programming language with ints, strings \& function calls
"Computable function" = always returns something
"Decider" = computable function always returning 0 / I
"Acceptor" = accept if return I; reject if $\neq \mathrm{I}$ or loop
$A_{\text {Prog }}=\{<P, w\rangle \mid$ program P returns I on input $\left.w\right\}$
$H_{A L T}{ }_{\text {Prog }}=\{\langle P, w\rangle \mid$ prog P returns something on $w\}$

Many Undecidable Problems

About Turing Machines HALT $_{\text {Tм }}$ EQtm $_{\text {EMPTY }}^{\text {tm }}$ REGULAR ${ }_{\text {tm }}$...

About programs
Ditto! And: array-out-of-bounds, unreachability, loop termination, assertion-checking, correctness, ...
About Other Things
EMPTY lba ALLcfg EQcfg PCP DiophantineEqns ...

Summary

Turing Machines
A simple model of "mechanical computation"
Church-Turing Thesis
All "reasonable" models are alike in capturing the intuitive notion of "mechanically computable"

Decidable/Recognizable - Key distinction: Does it halt
Undecidability - counting, diagonalization, reduction

$$
\begin{aligned}
& A_{T M}=\{<M, w>\mid T M M \text { accepts } w\} \\
& \text { HALT }_{T M}=\{\langle M, w>| T M M \text { halts on } w\}
\end{aligned}
$$

Want More?

Check out CSE 43I
"Intro Computability \& Complexity"

