
Turing Machines

1

Reading Assignment: Sipser Chapter 3.1, 4.2

4.1 covers algorithms for decidable problems about
DFA, NFA, RegExp, CFG, and PDAs, e.g. slides 17 & 18
below. I’ve talked about most of this in class at one
point or another, but skimming 4.1 would probably be a
good review.

2

3 4

5

All other
transitions
go to qreject

6

By definition, no transitions out of qacc, qrej;

M halts if (and only if) it reaches either

M loops if it never halts (“loop” might suggest “simple”, but non-
halting computations may of course be arbitrarily complex)

M accepts if it reaches qacc,

M rejects by halting in qrej or by looping

The language recognized by M:
L(M) = { w ∈ Σ* | M accepts w }

7

L is Turing recognizable if ∃TM M s.t. L = L(M)

L is Turing decidable if, furthermore, M halts on all inputs

A key distinction!

8

TM’s formally capture the intuitive notion of
“algorithmically solvable”

Not provable, since “intuitive” is necessarily fuzzy.

But, give support for it by showing that
 (a) other intuitively appealing (but formally defined)
models are precisely equivalent, and
 (b) models that are provably different are unappealing,
either because they are too weak (e.g., DFA’s) or too
powerful (e.g., a computer with a “solve-the-halting-problem”
instruction).

Church-Turing Thesis

9

Example: Multi-tape Turing Machines

10

11

q0

Rej

Rej

.

.

.

...

Accept

RejRej

Rej

RejRej

Rej

.

.

.

Nondeterministic Turing Machines
δ: Q ! "# P (Q ! " ! {L,R})

12

q0

Rej

Rej

.

.

.

...

Accept

RejRej

Rej

RejRej

Rej

.

.

.

Accept if any
path leads to
qaccept; reject
otherwise,
(i.e., all halting
paths lead to
qreject)

Nondeterministic Turing Machines
δ: Q ! "# P (Q ! " ! {L,R})

13

Key issue: avoid getting lost on ∞ path

Key Idea: breadth-first search

tree arity ≤ |Q| x | Γ| x |{L,R}| (3 in example)

Simulating an NTM

q0

Rej

Rej

.

.

.

...

Accept

RejRej

Rej

RejRej

Rej

.

.

.

3211...

14

Encoding things

CFG G = (V, Σ, R, S) ; <G> = ((S,A,B,...),(a,b,...), (S→aA, S→b, A→cAb, ...),S)
or <G> = ((A0, A1, ...),(a0, a1, ...), (A0 → a0 A1, A0 → a1, A1 → a2 A1 a1 , ...), A0)

DFA D = (Q, Σ, δ, q0, F); <D> = (...)
TM M = (Q, Σ, Γ, δ, q0, qa, qr); <M> = (...)

...

Σ = ?

15

Decidability

Recall: L decidable means there is a TM recognizing L that
always halts.

Example:

“The acceptance problem for DFAs”

ADFA = { <D,w> | D is a DFA & w ∈ L(D) }

16

Some Decidable Languages

The following are decidable:

ADFA = { <D,w> | D is a DFA & w ∈ L(D) }

 pf: simulate D on w

ANFA = { <N,w> | N is an NFA & w ∈ L(N) }

 pf: convert N to a DFA, then use previous as a subroutine

AREX = { <R,w> | R is a regular expr & w ∈ L(R) }

 pf: convert R to an NFA, then use previous as a subroutine

17

EMPTYDFA = {<D> | D is a DFA and L(D) = ∅ }

 pf: is there no path from start state to any final state?

EQDFA = { <A,B> | A & B are DFAs s.t. L(A)= L(B) }

pf: equal iff L(A)⊕L(B) = ∅, and x⊕y = (x∩yc)∪(xc∩y), and
regular sets are closed under ∪, ∩, complement

ACFG = { <G,w> | ... }

 pf: see book

EMPTYCFG = { <G> | ... }

 pf: see book

18

EQCFG = { <A,B> | A & B are CFGs s.t. L(A) = L(B) }

This is NOT decidable

19 20

The Acceptance Problem for TMs

ATM = { <M,w> | M is a TM & w ∈ L(M) }

Theorem: ATM is Turing recognizable

Pf: It is recognized by a TM U that, on input <M,w>, simulates
M on w step by step. U accepts iff M does. �

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

21

Programming ENIAC, circa 1947
http://en.wikipedia.org/wiki/ENIAC

22

The Set of Languages in Σ*
is Uncountable

Suppose they were

List them in order

Define L so that
wi ∈ L ⇔ wi ∉Li

Then L is not in the list

Contradiction

w1

1
w2 w3 w4 w5 w6

L1

L2

L3

L4

L5

L6

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 1

L 1 0 1 1 1 0 ...

...

...

...

23

“Most” languages are neither Turing
recognizable nor Turing decidable

Proof idea:

“⟨ ⟩” maps TMs into Σ*, a countable set, so the set of
TMs, and hence of Turing recognizable languages is also
countable; Turing decidable is a subset of Turing
recognizable, so also countable. But by the previous
result, the set of all languages is uncountable.

24

A specific non-Turing-
recognizable language

Let Mi be the TM encoded
by wi, i.e. ⟨Mi⟩ = wi

(Mi = some default machine, if wi
is an illegal code.)

i, j entry =1 ⇔ Mi accepts wj

LD ={ wi | i,i entry = 0}

Then LD is not recognized by
any TM

w1

1
w2 w3 w4 w5 w6

<M1>
><M2>

<M3>
<M4>
<M5>
<M6>

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
0 1 0 0 0 1

LD 1 0 1 1 1 0 ...

...

...

...

25

Theorem: The class of Turing recognizable languages is
not closed under complementation.

Proof:

The complement of D, is Turing recognizable:

On input wi, run <Mi> on wi (= <Mi>); accept if it
does. E.g. use a universal TM on input <Mi,<Mi>>

E.g., in previous example, Dc might be L(M6)

26

Theorem: The class of Turing decidable languages is
closed under complementation.

Proof Idea:

Flip qaccept, qreject, (just like we did with DFAs)

27

The Acceptance Problem for TMs

ATM = { <M,w> | M is a TM & w ∈ L(M) }

Theorem: ATM is Turing recognizable

Pf: It is recognized by a TM U that, on input <M,w>, simulates
M on w step by step. U accepts iff M does. �

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

28

ATM is Undecidable

ATM = { <M,w> | M is a TM & w ∈ L(M) }

Suppose it’s decidable, say by TM H. Build a new TM D:

“on input <M> (a TM), run H on <M,<M>>; when it
halts, halt & do the opposite, i.e. accept if H rejects
and vice versa”

D accepts <M> iff H rejects <M,<M>> (by construction)
 iff M rejects <M> (H recognizes ATM)

D accepts <D> iff D rejects <D> (special case)

Contradiction!

29

Let Mi be the TM
encoded by wi, i.e.
<Mi> = wi

(Mi = some default machine, if
wi is an illegal code.)

i, j entry tells whether
Mi accepts wj

Then LD is not recognized
by any TM

A specific non-Turing-
recognizable language

w1

1
w2 w3 w4 w5 w6

<M1>
><M2>

<M3>
<M4>
<M5>
<M6>

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
0 1 0 0 0 1

LD 1 0 1 1 1 0 ...

...

...

...

Note:
 The a

bove T
M D, if

it e
xiste

d, would re
cognize

exact
ly t

he la
nguage

 LD

defined in this

diago
naliz

atio
n proof

(which
 we a

lrea
dy k

now is

not re
cognizab

le)

30

Decidable Recognizable

recognizable

decidable

co-
recognizable

⊂ ≠

LD
LD

31

Decidable = Rec ∩ co-Rec

recognizable

decidable

co-
recognizable

L decidable iff both L
& Lc are recognizable
Pf: ($) on any given input,
dovetail (run in parallel) a
recognizer for L with one for
Lc; one or the other must halt
& accept, so you can halt &
accept/reject appropriately.

(%): from above, decidable
languages are closed under
complement (flip acc/rej)

32

The Halting Problem
HALTTM = { <M,w> | TM M halts on input w }

Theorem: The halting problem is undecidable

Proof:

Suppose TM R decides HALTTM.
Consider S:

On input <M,w>, run R on it. If it rejects,
halt & reject; if it accepts, run M on w;
accept/reject as it does.

Then S decides ATM, which is impossible. R can’t exist.

Halt?

M,w

Simulate M on w

acc

accrej

rej

R:S: Yes

33

Programs vs TMs

Everything we’ve done re TMs can be rephrased re programs

From the Church-Turing thesis, we expect them to be equivalent,
and it’s not hard to prove that they are

Some things are perhaps easier with programs.

Others get harder (e.g., “Universal TM” is a Java interpreter written
in Java; “configurations” etc. are much messier)

TMs are convenient to use here since they strike a good balance
between simplicity and versatility

Hopefully you can mentally translate between the two; decidability/
undecidability of various properties of programs are obviously
more directly relevant.

34

Programs vs TMs

Fix Σ = printable ASCII

Programming language with ints, strings & function calls

“Computable function” = always returns something

“Decider” = computable function always returning 0 / 1

“Acceptor” = accept if return 1; reject if ≠1 or loop

AProg = {<P,w> | program P returns 1 on input w }

HALTProg = {<P,w> | prog P returns something on w }
...

35

Many Undecidable
Problems

About Turing Machines

HALTTM EQTM EMPTYTM REGULARTM ...

About programs

Ditto! And: array-out-of-bounds, unreachability, loop
termination, assertion-checking, correctness, ...

About Other Things

EMPTYLBA ALLCFG EQCFG PCP DiophantineEqns ...

36

Summary

Turing Machines

 A simple model of “mechanical computation”

Church-Turing Thesis

 All “reasonable” models are alike in capturing the
 intuitive notion of “mechanically computable”

Decidable/Recognizable – Key distinction: Does it halt

Undecidability – counting, diagonalization, reduction

 ATM = { <M,w> | TM M accepts w }
HALTTM = { <M,w> | TM M halts on w }

37

Want More?

Check out CSE 431
“Intro Computability & Complexity”

38

