
Turing Machines
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Reading Assignment: Sipser Chapter 3.1, 4.2

4.1 covers algorithms for decidable problems about 
DFA, NFA, RegExp, CFG, and PDAs, e.g. slides 17 & 18 
below.  I’ve talked about most of this in class at one 
point or another, but skimming 4.1 would probably be a 
good review.
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All other 
transitions 
go to qreject
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By definition, no transitions out of qacc, qrej;

M halts if (and only if) it reaches either

M loops if it never halts (“loop” might suggest “simple”, but non-
halting computations may of course be arbitrarily complex)

M accepts if it reaches qacc, 

M rejects by halting in qrej or by looping

The language recognized by M:
L(M) = { w ∈ Σ* | M accepts w } 
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L is Turing recognizable if ∃TM M s.t. L = L(M)

L is Turing decidable if, furthermore, M halts on all inputs

A key distinction!
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TM’s formally capture the intuitive notion of 
“algorithmically solvable”

Not provable, since “intuitive” is necessarily fuzzy.

But, give support for it by showing that 
    (a) other intuitively appealing (but formally defined) 
models are precisely equivalent, and 
    (b) models that are provably different are unappealing, 
either because they are too weak (e.g., DFA’s) or too 
powerful (e.g., a computer with a “solve-the-halting-problem” 
instruction).

Church-Turing Thesis
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Example: Multi-tape Turing Machines
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Nondeterministic Turing Machines
δ: Q ! "# P    (Q ! " ! {L,R})
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Accept if any 
path leads to 
qaccept;  reject 
otherwise,
(i.e., all halting 
paths lead to 
qreject )

Nondeterministic Turing Machines
δ: Q ! "# P    (Q ! " ! {L,R})
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Key issue: avoid getting lost on ∞ path

Key Idea: breadth-first search

tree arity ≤ |Q| x | Γ| x |{L,R}|  (3 in example)

Simulating an NTM
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Encoding things

CFG G = (V, Σ, R, S) ;   <G> = ((S,A,B,...),(a,b,...), (S→aA, S→b, A→cAb, ...),S)
or        <G> = ((A0, A1, ...),(a0, a1, ...), (A0 → a0 A1, A0 → a1,  A1 → a2 A1 a1 , ...), A0)

DFA  D = (Q, Σ, δ, q0, F);             <D> = (...) 
TM   M = (Q, Σ, Γ, δ, q0, qa, qr);    <M> = (...)

...

Σ = ?
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Decidability

Recall: L decidable means there is a TM recognizing L that 
always halts.

Example:

“The acceptance problem for DFAs”

ADFA = { <D,w> | D  is a DFA & w ∈ L(D) } 
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Some Decidable Languages

The following are decidable:

ADFA = { <D,w> | D  is a DFA & w ∈ L(D) }

    pf: simulate D on w

ANFA = { <N,w> | N is an NFA & w ∈ L(N) }

    pf: convert N to a DFA, then use previous as a subroutine

AREX = { <R,w> | R is a regular expr & w ∈ L(R) }

    pf: convert R to an NFA, then use previous as a subroutine 

17

EMPTYDFA = {<D> | D is a DFA and L(D) = ∅ }

    pf: is there no path from start state to any final state?

EQDFA = { <A,B> | A & B are DFAs s.t. L(A)= L(B) }

pf: equal iff L(A)⊕L(B) = ∅, and x⊕y = (x∩yc)∪(xc∩y), and  
regular sets are closed under ∪, ∩, complement

ACFG = { <G,w> | ... }

     pf: see book

EMPTYCFG = { <G> | ... }

    pf: see book
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EQCFG = { <A,B> | A & B are CFGs s.t. L(A) = L(B) }

This is NOT decidable
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The Acceptance Problem for TMs

ATM = { <M,w> | M  is a TM & w ∈ L(M) }

Theorem:  ATM is Turing recognizable

Pf: It is recognized by a TM U that, on input <M,w>, simulates 
M on w step by step.  U accepts iff M does.   �

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.
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Programming ENIAC, circa 1947
http://en.wikipedia.org/wiki/ENIAC
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The Set of Languages in Σ* 
is Uncountable

Suppose they were

List them in order

Define L so that  
wi ∈ L ⇔ wi ∉Li

Then L is not in the list

Contradiction

w1

1
w2 w3 w4 w5 w6

L1

L2

L3

L4

L5

L6

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 1

L 1 0 1 1 1 0 ...

...

...

...
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“Most” languages are neither Turing 
recognizable nor Turing decidable

Proof idea:  

“⟨ ⟩” maps TMs into Σ*, a countable set, so the set of 
TMs, and hence of Turing recognizable languages is also 
countable; Turing decidable is a subset of Turing 
recognizable, so also countable.  But by the previous 
result, the set of all languages is uncountable.
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A specific non-Turing-
recognizable language

Let Mi be the TM encoded 
by wi, i.e.  ⟨Mi⟩ = wi

(Mi = some default machine, if wi 
is an illegal code.)

i, j entry =1 ⇔ Mi accepts wj

LD ={ wi | i,i entry = 0}

Then LD is not recognized by 
any TM

w1

1
w2 w3 w4 w5 w6

<M1>
><M2>

<M3>
<M4>
<M5>
<M6>

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
0 1 0 0 0 1

LD 1 0 1 1 1 0 ...

...

...

...
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Theorem:  The class of Turing recognizable languages is 
not closed under complementation.

Proof:

The complement of D, is Turing recognizable:

On input wi, run <Mi> on wi (= <Mi>); accept if it 
does.  E.g. use a universal TM on input <Mi,<Mi>>

E.g., in previous example, Dc might be L(M6)
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Theorem:  The class of Turing decidable languages is 
closed under complementation.

Proof Idea:

Flip qaccept, qreject,  (just like we did with DFAs)
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The Acceptance Problem for TMs

ATM = { <M,w> | M  is a TM & w ∈ L(M) }

Theorem:  ATM is Turing recognizable

Pf: It is recognized by a TM U that, on input <M,w>, simulates 
M on w step by step.  U accepts iff M does.   �

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.
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ATM is Undecidable

ATM = { <M,w> | M  is a TM & w ∈ L(M) }

Suppose it’s decidable, say by TM H.  Build a new TM D:

“on input <M> (a TM), run H on <M,<M>>; when it 
halts, halt & do the opposite, i.e. accept if H rejects 
and vice versa”

D accepts <M> iff H rejects <M,<M>>    (by construction)
                        iff M rejects <M>           (H recognizes ATM)

D accepts <D> iff D rejects <D>            (special case)

Contradiction!
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Let Mi be the TM 
encoded by wi, i.e. 
<Mi> = wi

(Mi = some default machine, if 
wi is an illegal code.)

i, j entry tells whether 
Mi accepts wj

Then LD is not recognized 
by any TM

A specific non-Turing-
recognizable language

w1

1
w2 w3 w4 w5 w6

<M1>
><M2>

<M3>
<M4>
<M5>
<M6>

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
0 1 0 0 0 1

LD 1 0 1 1 1 0 ...

...

...

...
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Decidable     Recognizable

recognizable

decidable

co-
recognizable

⊂ ≠

LD
LD
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Decidable = Rec ∩ co-Rec

recognizable

decidable

co-
recognizable

L decidable iff both L 
& Lc are recognizable
Pf: ($) on any given input, 
dovetail (run in parallel) a 
recognizer for L with one for 
Lc; one or the other must halt 
& accept, so you can halt & 
accept/reject appropriately.

(%): from above, decidable 
languages are closed under 
complement (flip acc/rej)
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The Halting Problem
HALTTM = { <M,w> | TM M halts on input w }

Theorem:  The halting problem is undecidable

Proof:

Suppose TM R decides HALTTM.  
Consider S: 

On input <M,w>, run R on it.  If it rejects, 
halt & reject; if it accepts, run M on w; 
accept/reject as it does.

Then S decides ATM, which is impossible.  R can’t exist.

Halt?

M,w

Simulate M on w

acc

accrej

rej

R:S: Yes
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Programs vs TMs

Everything we’ve done re TMs can be rephrased re programs 

From the Church-Turing thesis, we expect them to be equivalent, 
and it’s not hard to prove that they are

Some things are perhaps easier with programs.

Others get harder (e.g., “Universal TM” is a Java interpreter written 
in Java; “configurations” etc. are much messier)

TMs are convenient to use here since they strike a good balance 
between simplicity and versatility

Hopefully you can mentally translate between the two; decidability/
undecidability of various properties of programs are obviously 
more directly relevant.
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Programs vs TMs

Fix Σ = printable ASCII

Programming language with ints, strings & function calls

“Computable function” = always returns something

“Decider” = computable function always returning 0 / 1

“Acceptor” = accept if return 1; reject if ≠1 or loop

AProg = {<P,w> | program P returns 1 on input w }

HALTProg = {<P,w> | prog P returns something on w }
...
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Many Undecidable 
Problems

About Turing Machines

HALTTM  EQTM  EMPTYTM  REGULARTM ...

About programs

Ditto!  And: array-out-of-bounds, unreachability, loop 
termination, assertion-checking, correctness, ...

About Other Things

EMPTYLBA  ALLCFG EQCFG PCP DiophantineEqns ...
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Summary

Turing Machines 

  A simple model of “mechanical computation”

Church-Turing Thesis

    All “reasonable” models are alike in capturing the
    intuitive notion of “mechanically computable”

Decidable/Recognizable – Key distinction: Does it halt

Undecidability – counting, diagonalization, reduction

 ATM = { <M,w> | TM M accepts w }
HALTTM = { <M,w> | TM M halts on w }
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Want More?

Check out CSE 431 
“Intro Computability & Complexity”
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