Reading Assignment: Sipser Chapter 3.1,4.2

4.1 covers algorithms for decidable problems about

TU rin g Mach INES DFA, NFA, RegExp, CFG, and PDAs, e.g. slides 17 & 18

below. I've talked about most of this in class at one
point or another, but skimming 4.1 would probably be a
good review.

) l/ é/ ﬁa,?@,zq/?f&j ,/)

— Ve “plaak

T gt dpldt ot Dk s
fonts tage W’ff L Tefwic

2
+
X
].

I

~ ~
axl— é”"{p/.,kg TVM¢_7r‘c7—(WL?.:\

9!
fo €@ At ot

Yo €GO 2teept s A) ‘
& [e <o ramtsbe 27

-ry
Al (T (-
.f——-) bbuw

A all (T (-~
> Lluw

Ex ouphs
*Q=A{q,...,qa, Gaccept: reject }» -

- - #
+ $={0,1.#},and T = {0.1.#.x.0}. SR e S

’; X & 2 g, * We describe ¢ with a state diagram (see the following figure). | - chaek At Hony 4 sogh #
s * The start, accept, and reject states are g1, Gaceepr, and Greject. 2 Yeod Yeutadin £ cvess off

3. Scem to # & compes WW"”,[:&
4, Bf 0¥, Cyress ;44{
Yeqzed

Q
L chuch Hod Hewh 4 5:»7,& # 01-R () (B>x-R (@] 01-R
A, YW t Y%uh<m59:k £ cves S p%l i ,
W ‘.4 m x—R ‘@ @ @’ x—R

umcro § Somr’

3. Scem to # & compec mept llin All oth
other
4, Tf 0¥, cyess ;*4{ transitions

#—L g0 1O Qreject
5. Yeysef @ o @\D e

L: {wéw (wve fq13%53

L: {wdw (wve fo13%3 (

By definition, no transitions out of Gacc, Grej; L is Turing recognizable if 3TM M s.t. L = L(M)

M halts if (and only if) it reaches either L is Turing decidable if, furthermore, M halts on all inputs

M IOOPS if it never halts (“loop” might suggest “simple”, but non-
halting computations may of course be arbitrarily complex)

M accepts if it reaches Qac, A key distinction!
M rejects by halting in qrej or by looping

The language recognized by M:
L(M) ={w e 2* | M accepts w }

Church-Turing Thesis

TM’s formally capture the intuitive notion of
“algorithmically solvable”

Not provable, since “intuitive” is necessarily fuzzy.

But, give support for it by showing that

(2) other intuitively appealing (but formally defined)
models are precisely equivalent, and

(b) models that are provably different are unappealing,
either because they are too weak (e.g., DFA’s) or too
powerful (e.g.,a computer with a “solve-the-halting-problem”
instruction).

[#]o[1]o1]o(#]alalale)Db]ale]]...

Example: Multi-tape Turing Machines

|
oltlof1]o]u]...

M

[a]alalc]..

Braleh o IRl e T e $ 1l R.S}A'

Nondeterministic Turing Machines
0:QxI'=P(QxTI x{LR})

Nondeterministic Turing Machines
0:QxI'=P(QxTI x{LR})

Accept if any
path leads to
Gaeeepry FEjECE
otherwise,
(i.e., all halting
paths lead to

Qreject)

(1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Sii=—d

CFG G =(V,Z,R,S); <G> = ((sAB..)@b..), (SaA S~bA—cAb,..).S)
or <G> = ((Ao A,)(@0,a1,), (Ao = a0 Al Ao = ai, Al = a2 A ai,), Ag)
DFA D = (Q, 2, d, qo, F); <D> = (..
™ M=(QZ%TI,8,q09xsq); <M>=(.)

Simulating an NTM

Key issue: avoid getting lost on & path

Key ldea: breadth-first search

) nnn ... inputtape
ERER
[x IXJ # l 0 | 1 lx] u | ... simulation tape :

[1]2]3]3]2]3]1]2]1]t][3]u]... addresstape

D

tree arity < |Q| x | I'| x [{LLR}| @3 in example)

Decidability

Recall: L decidable means there is a TM recognizing L that
always halts.

Example:
“The acceptance problem for DFAs”
Apra = {<Dw>| D isa DFA & w € L(D) }

Some Decidable Languages

The following are decidable:
Apra ={<Dw>|D isaDFA&we L(D)}
pf: simulate D on w
Anra = { <N,w> | N is an NFA & w € L(N) }
pf: convert N to a DFA, then use previous as a subroutine
Arex = { <R,w> | R is a regular expr & w € L(R) }

pf: convert R to an NFA, then use previous as a subroutine

EQcre = { <A,B> | A & B are CFGs s.t. L(A) = L(B) }

This is NOT decidable

EMPTYpra = {<D>|Disa DFAand L(D) = @ }
pf: is there no path from start state to any final state?
EQora = { <A,B> | A & B are DFAs s.t. L(A)= L(B) }

pf: equal iff L(A)®L(B) = @, and x®y = (xny)u(xny), and
regular sets are closed under u, n, complement

Acrc = { <Gw> | ...}
pf: see book
EMPTYcrg = { <G> | ...}

pf: see book

Turing-recognizable

decidable

FIGURE 4.10
The relationship among classes of languages

20

The Acceptance Problem for TMs

Am={<Mw>|M isaTM & w e L(M) }

Theorem: Arwm is Turing recognizable

Pf: It is recognized by a TM U that, on input <M,w>, simulates
M on w step by step. U accepts iff M does. [J

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

21

The Set of Languages in 2°
is Uncountable

Suppose they were WAl | e | et | | |
List them in order :“ ? ? ? ? ? ?
Define L so that |_i oltrloli1 o]
wi e L e w;¢L; .lo]1|lojo|lo]|oO
= | 0[O0
ThenLisnotinthelist = [[[1110l
Contradiction :

LitfJoli]r]1]o].

23

“Most” languages are neither Turing
recognizable nor Turing decidable

Proof idea:

“()” maps TMs into X', a countable set, so the set of
TMs, and hence of Turing recognizable languages is also
countable; Turing decidable is a subset of Turing
recognizable, so also countable. But by the previous
result, the set of all languages is uncountable.

24

A specific non-Turing-
recognizable language

Theorem: The class of Turing recognizable languages is

Let Mi. be the TM encoded AL | NP | WS WAL | not closed under complementation.
by wi,i.e. (M) =w;i ojojojoo]oO
N I B R Proof:
(Mi = some default machine, if w;
is an illegal code.) ojt1rfof1rjo]1l The complement of D, is Turing recognizable:
i,j entry =1 & Miaccepts w; ? : (I) g g 8 On input wi, run <Mi> on w; (= <M;>); accept if it
does. E.g.use a universal TM on input <M;<M;>>
Lo ={ wi | i,i entry = 0} ojl1|jofojofl
Then Lo is not recognized by . o .
any ™ la |) | 0 | | | I | I | 0 | E.g., in previous example, D¢ might be L(M¢)
25 26
The Acceptance Problem for TMs
Theorem: The class of Turing decidable languages is Am={<Mw>|M isaTM & w e L(M) }
closed under complementation.
Theorem: Arm is Turing recognizable
Proof Idea: Pf: It is recognized by a TM U that, on input <M,w>, simulates
Flip Gaccepts Grejects (just like we did with DFAs) M on w step by step. U accepts iff M does. [

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

27 28

ATmMm is Undecidable

Amm={<Mw>|M isaTM & w e L(M) }
Suppose it’s decidable, say by TM H. Build a new TM D:

“on input <M> (aTM), run H on <M,<M>>; when it
halts, halt & do the opposite, i.e. accept if H rejects
and vice versa”

D accepts <M> iff H rejects <M,<M>> (by construction)

iff M rejects <M> (H recognizes Atwv)

D accepts <D> iff D rejects <D> (special case)

Contradiction!

29

Decidable & Recognizable

co-
recognizable

recognizable

Lo

31

A sg,\’o:\’§;c non-Turing-
o
;,po*?’(e@;w ble language
(O

i, j @l\(\\ (\o"(, nether

Mi a\ > Wi

Oo|—[([Co|O|— |9 |

o|0(C|—|—|O|:
oO|O(Co|O|—|O|:
—|Oo|o|—|—|OC

O |—|O|OC|—|O |

Then Lo is not recognized
by any T Lo |

i1]o]..

o

30

Decidable = Rec n co-Rec

L decidable iff both L
& L° are recognizable

Pf: (<) on any given input,
dovetail (run in parallel) a
recognizer for L with one for
L; one or the other must halt
& accept, so you can halt &
accept/reject appropriately.

co-
recognizable

recognizable

decidable

(=): from above, decidable
languages are closed under
complement (flip acc/rej)

32

The Halting Problem

HALTtM = { <M,w> | TM M halts on input w }

Theorem: The halting problem is undecidable

Proof:

Suppose TM R decides HALT m. S:
Consider S:
On input <M,w>, run R on it. [f it rejects,

halt & reject; if it accepts, run M on w;
accept/reject as it does.

* .
rej acc

Then S decides Atm, which is impossible. R can’t exist.

33

Programs vs TMs
Fix 2 = printable ASCII

Programming language with ints, strings & function calls
“Computable function” = always returns something
“Decider” = computable function always returning 0 / |
“Acceptor” = accept if return |; reject if #1 or loop
Aprog = {<Pw> | program P returns | on input w }

HALTprog = {<Pw> | prog P returns something on w }

35

Programs vs TMs

Everything we've done re TMs can be rephrased re programs

From the Church-Turing thesis, we expect them to be equivalent,
and it’s not hard to prove that they are

Some things are perhaps easier with programs.

Others get harder (e.g.,“Universal TM” is a Java interpreter written
in Java; “configurations” etc.are much messier)

TMs are convenient to use here since they strike a good balance
between simplicity and versatility

Hopefully you can mentally translate between the two; decidability/
undecidability of various properties of programs are obviously
more directly relevant.

34

Many Undecidable

Problems

About Turing Machines
HALTtm EQtv EMPTYtm REGULARTM ...
About programs

Ditto! And: array-out-of-bounds, unreachability, loop
termination, assertion-checking, correctness, ...

About Other Things
EMPTYea AlLcrc EQcrc PCP DiophantineEgns ...

36

Summary

Turing Machines
A simple model of “mechanical computation”

Church-Turing Thesis

All “reasonable” models are alike in capturing the
intuitive notion of “mechanically computable”

Decidable/Recognizable — Key distinction: Does it halt
Undecidability — counting, diagonalization, reduction

At = { <M,w> | TM M accepts w }
HALTtm = { <M,w> | TM M halts on w }

37

Want More!?

Check out CSE 431
“Intro Computability & Complexity”

38

