Non-Context-free
Languages:
Pumping on Steroids
and Closure Revisited



Is Every L a CFL?

Again, just “counting” says no:
Fixed an alphabet 2
Let =2 u{g, —,|,;,A 01}
| can encode every grammar over 2 as a single string over the
somewhat larger finite alphabet I, e.g.:
“Aoi — aAbAoi | € Al = Aol
Since [* is countably infinite, but the set of languages L € 2* is
uncountably infinite, non-context-free languages must exist.

(I could encode every grammar as a single string of bits, too, so the dependence

on 2 above is unnecessary, but avoids some technical details.)

What are some concrete examples of non-CFLs?



f Which are CFLs?

{""l’jc“\ E)yecisk § cRL
gc“b“c“ "M’.c ] nonCFL
{ wwt| W e 4ah3¥ g CFL

{ W | W & ;g‘(,;“ )’ nonCFL

Q: How might we prove such facts!?
A: Via a CFL-specific form of the “Pumping Lemma.”




The Pumping Lemma for
Context-free Languages

VQF‘- A pt vaeh
“F (4\ >,F 4"4“ g u_;\/‘x’y’t ‘,i.”-

®) 4= UVXxyR

€) ¥ize UWVixya ef
(i) Wyl >e

() Wyl gp



L ={a"b"c" | n=0 } is not a CFL

\V/“‘- APt veeh
Suppose L were a CFL. Let pbe the | # Wlsp Hu J wunyp esr

constant from the pumping lemma & O A WvxyoR
let s = aPbPcP. By the pumping lemma | ¢ voe wyixya e

there are strings u, v, X, ¥, z such that..., @) Wiyl >e
(%) vyl gp

Since |vxy|<p, vxy cannot include both a and c.

Case |:vxy does not contain a “c”. Then uv®xy%z has p
c’s, but fewer a’s or b’s (or both), hence is not in L

Case 2: vxy does not contain an “a”. Then uvy% has p
a’s, but fewer b’s or c’s (or both), hence is not in L.

Contradiction. Thus L is not a CFL



To prove the pumping lemma, this
fact about trees will be useful:

Lewwme . a b-avy +ree t{kcc'}b'
W Wae 4 b leave

*s A\ o m L

Conyay u.ly y > L‘\ P

Twpliw ha fgpr > |



?Vu" c'llh-

Qe C"J Feovr A
bt lwtd lewged rws o fulernG

P b whew wa |V],#qvars fug

vm APt vgeh
Wllap v T uwikyp esr

©®) A = u.'v'x-y-a.

€) ¥ize WVikyia ef AeL (G W |al 3 p
() Wyl > e
(%) ey gp Pree o Swallee” puvse tven Ffo &

omd o Icurq- poth 1w vhol +res

vp o A Suge
repectad om / \ RS aR J
.

S Rt x

| ) Sy A

1 tiwse,




ot pat

O\ %p = JReV S o uQ;
 Fiimrie / j\ RS R J

Vcn APt vgeh
W llap v T wikyr egr

®) 4= u.'v~x-7.§.

«) Vi2e U»V"x \"a, éﬂ
() Wyl >e

() Wyl gp

=t x

ek

1 tise,

-
Wy & vepeat T Pigeon-Hole Principle, again
A N Y )
= Soma variehl R \L YIS oW}
Wy Arg %€ 7
becrun itway swallegf tree

\:)‘47 lvral ¢ v ?
Pieke n.p-cd naavegt M’



L- £ we | we f4,687 S

4 = }?\54'6

qd = ar br 4( Lr ef.vﬂa‘fué
&/ M
a a-a e & 6 b-blﬂaceca bbb
— T_‘L.—-&H —
- é&;;/tk_u:u

ALTES A cmwhdm.uﬁ.%
‘1. ol node s blod-v/ a4 Ly,
se
= luvry| < 2p

wvexy°se (amered? W WA
Fvornn W WM 18 kK £€P
o Lot [obtn 7 (nete) Lt ol
A1, Ll (w‘fkng.«é/;;é_



c}%; fw Foght kol @ Srde

’
cwvx7 "h#" Wo'/“.

wvéry’ & = afbial bf
for Sone (&P ) £ P

wot wAthi= =P

¢ ¢ § new left half ends with a, right half with b
J‘ 4 ¢ hew right half starts with b, left half with a

teier ol bl 3 2 bF

10



W\ »
Covells vy
* w “ T“v‘ M
fovlweiedl™ T net efL= Ty

“ww” is representative of programming languages that require
variables to be declared (Ist w) before use (2nd w).
None of these languages (C, C++, Java,...) are CFLs at this level.
But CFGs are still very useful in compilers! The parse tree
defines the structure of the program:

“this is a variable name in a declaration”

“this is a variable name in an expression”
Details like “is this name declared somewhere” are easily

tacked on: store in dictionary at decl; look up in expr.

11



Some closure &
non-closure results

Li = {a™b™c" | m,n = 0} is a CFL

L, = {a™b"c" | m,n = 0} isa CFL

Li n L, ={a"b"c" | n = 0} is not a CFL

Therefore, the set of CFLs is not closed under intersection
Therefore, not closed under complementation, either

Fact:if L is CFL & R is regular, then L n R is CFL

Ex: L3 = {w|w has equal numbers of a’s, b’s, & c’s} is not a
CFL, since L3 n a*b*c* = {a"b"c" | n = 0}, which is not CFL

12



Summary

There are many non-context-free languages
(uncountably many, again)

Famous examples: { ww | we2* } and { a"b"c" | n>0 }

“Pumping Lemma”: uvixy'z; v-y pair comes from a
repeated var on a long tree path

Unlike the class of regular languages, the class of CFLs is
not closed under intersection, complementation; is
closed under intersection with regular languages (and
various other operations; see exercises in text).

13



