
Context-free Languages
and Pushdown

Automata

1

Finite Automata vs CFLs

From earlier results:
 every regular language is a CFL
 but there are CFLs that are not regular
Can we extend Finite Automata to equal CFLs?
I.e., get a machine-like characterization of CFLs?

CFLs

Regular
Languages

•E.g., {anbn}

2

A key feature:
 recursion

Recursion’s twin:
a pushdown stack

Pushdown sufficient? intuitively, yes:

3

Example
4

Alternate way to define this:

A PDA Configuration (stack top on left):

⟨state, stack, input⟩

A PDA Move:

⟨p, at, wx⟩ ⊢ ⟨q, bt, x⟩

if ∃ p,q ∈ Q, a ∈ Γ∪{ε}, t ∈ Γ*, w ∈
Σ∪{ε}, x ∈ Σ* s.t. (q,b) ∈ δ(p,w,a)

Multiple moves:

⊢k : exactly k steps

⊢* : 0 or more steps

M can reach q with γ∈Γ* on its stack
after reading w∈Σ* if

⟨q0, ε, w⟩ ⊢* ⟨q,γ, ε⟩
M accepts w if above, and q∈F

L(M) = { w∈Σ* | M accepts w }

5

Which move
E.g., “M can reach q3 with $ on its stack after reading a2b2”,
and “M can reach q4 with ε on stack reading a2b2” and
“M accepts a2b2”.

top of stack @ right

6

Every CFL is accepted
by some PDA

Every regular language is accepted by some PDA
(basically, just ignore the stack...)

Above examples show that PDAs are sufficiently
powerful to accept some context-free but non-regular
languages, too

In fact, they can accept every CFL:

 Proof 1: the book’s “top down” parser (next)

 Proof 2: “bottom up,” (aka “shift-reduce”) parser (later)

7

PDAs accept all CFLs
“Top-Down”

For any CFG G=(V, Σ, R, S), build
PDA M = (Q, Σ, Γ, δ, q0, F), where

 Q = {q0, q, qaccept}

 Γ = V ∪ Σ ∪ {$} ($∉V∪Σ)

 F = {qaccept}, and

 δ is defined by the diagram
Idea: on input w, M nondeterministically picks a leftmost derivation
of w from S. Stack holds intermediate strings in derivation (left
end at top); letters in Σ on top of stack matched against input.

q0

q

qa

ε, ε→S$
a, a→ε ∀a∈Σ
ε, A→α for all
rules A→α in R

ε, $→ε

matched
input

on
stack

S

8

9

S ⇒L aSbS
⇒L aaSbSbS
⇒L aabSbS
⇒L aabbS
⇒L aabbaSbS
⇒L aabbabS
⇒L aabbab

State Stack Input Deriv
q0 ε aabbab
q S$ aabbab

1
q aSbS$ aabbab
q SbS$ abbab

2
q aSbSbS$ abbab
q SbSbS$ bbab

3
q bSbS$ bbab
q SbS$ bab

4
q bS$ bab
q S$ ab

5
q aSbS$ ab
q SbS$ b

6
q bS$ b
q S$ ε

7
q $ ε

qaccept ε ε

2

Top-Down Parser

a a b b a b

1

2

3

4

5

6

7

1

3

4

5

6

7

S→aSbS|ε
q0

q

qa

ε, ε→S$
a, a→ε
b, b→ε
ε, S→aSbS
ε, S→ε

ε, $→ε

Input accepted

S

3

ε

4

ε

6

ε

7

ε

2

a b

S S

5

a b

S S

1

a b

S S

S

to
p

bo
t

10

PDAs accept all CFLs
“Bottom-Up” / “Shift-Reduce”

For any CFG G=(V, Σ, R, S), build
PDA M = (Q, Σ, Γ, δ, q0, F), where

 Q = {q0, q, qaccept}

 Γ = V ∪ Σ ∪ {$} ($∉V∪Σ)

 F = {qaccept}, and

 δ is defined by the diagram
Idea: on input w, M nondeterministically picks a rightmost
derivation backwards, from w to S. Shift input onto stack
or “reduce” top few symbols at each step.

qaqε,ε→$ ε,$S→ε

“shift”
a,ε→a, ∀a∈Σ

ε,β→A, ∀ (A→β)∈R
“reduce”

q0

stack

unread
input

S

11

7

6

5

4

3

2

1aabbab

aaSbSbab
aSbab
aSbaSb
aSbaSbS
aSbS

aaSbbab

⇒R

⇒R

⇒R

⇒R

⇒R

⇒R

⇒R

S
State kcatS Input Deriv

q0 ε aabbab 2

q $ aabbab 3

q $a abbab 4

q $aa bbab 5

q $aaS bbab 6

q $aaSb bab 7

q $aaSbS bab 8

q $aS bab 9

q $aSb ab 10

q $aSba b 11

q $aSbaS b 12

q $aSbaSb ε 13

q $aSbaSbS ε 14

q $aSbS ε 15

q $S ε 16

qaccept ε ε 17

6

Shift-Reduce Parser

a a b b a b

7

6

5

4

3

2

1

7

5

4

3

2

1

S→aSbS|ε

Input accepted

S

bo
t

to
p

q0

qa

q

ε, ε→$

ε, $S→ε

shift:
 a, ε→a
 b, ε→b
reduce:
 ε, ε→S
 ε, aSbS→S

aabbab

aaSbSbab
aSbab
aSbaSb
aSbaSbS
aSbS

aaSbbab

⇒R

⇒R

⇒R

⇒R

⇒R

⇒R

⇒R 7

a b

S

3

a b

S 6

a b

S

1

ε

S 2

ε

S 4

ε

S 5

ε

S

12

Sh
ift-

Red
uc

e

(E
x 2

)

2

Example: (Note the correspondence between the postorder numbering of the internal nodes of the tree
and the like-numbered steps in the derivation and the reduce moves in the PDA computation.)

G:

S → a S

S → if b then S

S → if b then S else S

S → ε

A Rightmost derivation:

S ⇒R a S (7)
⇒R a if b then S else S (6)
⇒R a if b then S else a S (5)
⇒R a if b then S else a (4)
⇒R a if b then if b then S else a (3)
⇒R a if b then if b then a S else a (2)
⇒R a if b then if b then a else a (1)

S

S

S

S

S

S

S

a a abb εεifif then then else

7

3

6

2

1

5

4

Accepting PDA Computation:

[q0, ε, a if b then if b then a else a] �
[q, $, a if b then if b then a else a] �
[q, $ a, if b then if b then a else a] �
[q, $ a if, b then if b then a else a] �

... 6 more shifts

[q, $ a if b then if b then a, else a] � (1)
[q, $ a if b then if b then a S, else a] � (2)
[q, $ a if b then if b then S, else a] � (3)
[q, $ a if b then S, else a] �
[q, $ a if b then S else, a] �
[q, $ a if b then S else a, ε] � (4)
[q, $ a if b then S else a S, ε] � (5)
[q, $ a if b then S else S, ε] � (6)
[q, $ a S, ε] � (7)
[q, $ S, ε] �
[qa, ε, ε]

The correctness of the construction is captured by the following assertion:
CLAIM: For all γ ∈ (V ∪ Σ)∗ and all w ∈ Σ∗,

γ ⇒k
R w if and only if [q, �, w] �k+|w| [q, γ, �].

Before proving the claim, look at the example again, and note that as a corollary,

S ⇒k
R w if and only if [q, �, w] �k+|w| [q, S, �],

2

Example: (Note the correspondence between the postorder numbering of the internal nodes of the tree
and the like-numbered steps in the derivation and the reduce moves in the PDA computation.)

G:

S → a S

S → if b then S

S → if b then S else S

S → ε

A Rightmost derivation:

S ⇒R a S (7)
⇒R a if b then S else S (6)
⇒R a if b then S else a S (5)
⇒R a if b then S else a (4)
⇒R a if b then if b then S else a (3)
⇒R a if b then if b then a S else a (2)
⇒R a if b then if b then a else a (1)

S

S

S

S

S

S

S

a a abb εεifif then then else

7

3

6

2

1

5

4

Accepting PDA Computation:

[q0, ε, a if b then if b then a else a] �
[q, $, a if b then if b then a else a] �
[q, $ a, if b then if b then a else a] �
[q, $ a if, b then if b then a else a] �

... 6 more shifts

[q, $ a if b then if b then a, else a] � (1)
[q, $ a if b then if b then a S, else a] � (2)
[q, $ a if b then if b then S, else a] � (3)
[q, $ a if b then S, else a] �
[q, $ a if b then S else, a] �
[q, $ a if b then S else a, ε] � (4)
[q, $ a if b then S else a S, ε] � (5)
[q, $ a if b then S else S, ε] � (6)
[q, $ a S, ε] � (7)
[q, $ S, ε] �
[qa, ε, ε]

The correctness of the construction is captured by the following assertion:
CLAIM: For all γ ∈ (V ∪ Σ)∗ and all w ∈ Σ∗,

γ ⇒k
R w if and only if [q, �, w] �k+|w| [q, γ, �].

Before proving the claim, look at the example again, and note that as a corollary,

S ⇒k
R w if and only if [q, �, w] �k+|w| [q, S, �],

2

Example: (Note the correspondence between the postorder numbering of the internal nodes of the tree
and the like-numbered steps in the derivation and the reduce moves in the PDA computation.)

G:

S → a S

S → if b then S

S → if b then S else S

S → ε

A Rightmost derivation:

S ⇒R a S (7)
⇒R a if b then S else S (6)
⇒R a if b then S else a S (5)
⇒R a if b then S else a (4)
⇒R a if b then if b then S else a (3)
⇒R a if b then if b then a S else a (2)
⇒R a if b then if b then a else a (1)

S

S

S

S

S

S

S

a a abb εεifif then then else

7

3

6

2

1

5

4

Accepting PDA Computation:

[q0, ε, a if b then if b then a else a] �
[q, $, a if b then if b then a else a] �
[q, $ a, if b then if b then a else a] �
[q, $ a if, b then if b then a else a] �

... 6 more shifts

[q, $ a if b then if b then a, else a] � (1)
[q, $ a if b then if b then a S, else a] � (2)
[q, $ a if b then if b then S, else a] � (3)
[q, $ a if b then S, else a] �
[q, $ a if b then S else, a] �
[q, $ a if b then S else a, ε] � (4)
[q, $ a if b then S else a S, ε] � (5)
[q, $ a if b then S else S, ε] � (6)
[q, $ a S, ε] � (7)
[q, $ S, ε] �
[qa, ε, ε]

The correctness of the construction is captured by the following assertion:
CLAIM: For all γ ∈ (V ∪ Σ)∗ and all w ∈ Σ∗,

γ ⇒k
R w if and only if [q, �, w] �k+|w| [q, γ, �].

Before proving the claim, look at the example again, and note that as a corollary,

S ⇒k
R w if and only if [q, �, w] �k+|w| [q, S, �],

2

Example: (Note the correspondence between the postorder numbering of the internal nodes of the tree
and the like-numbered steps in the derivation and the reduce moves in the PDA computation.)

G:

S → a S

S → if b then S

S → if b then S else S

S → ε

A Rightmost derivation:

S ⇒R a S (7)
⇒R a if b then S else S (6)
⇒R a if b then S else a S (5)
⇒R a if b then S else a (4)
⇒R a if b then if b then S else a (3)
⇒R a if b then if b then a S else a (2)
⇒R a if b then if b then a else a (1)

S

S

S

S

S

S

S

a a abb εεifif then then else

7

3

6

2

1

5

4

Accepting PDA Computation:

[q0, ε, a if b then if b then a else a] �
[q, $, a if b then if b then a else a] �
[q, $ a, if b then if b then a else a] �
[q, $ a if, b then if b then a else a] �

... 6 more shifts

[q, $ a if b then if b then a, else a] � (1)
[q, $ a if b then if b then a S, else a] � (2)
[q, $ a if b then if b then S, else a] � (3)
[q, $ a if b then S, else a] �
[q, $ a if b then S else, a] �
[q, $ a if b then S else a, ε] � (4)
[q, $ a if b then S else a S, ε] � (5)
[q, $ a if b then S else S, ε] � (6)
[q, $ a S, ε] � (7)
[q, $ S, ε] �
[qa, ε, ε]

The correctness of the construction is captured by the following assertion:
CLAIM: For all γ ∈ (V ∪ Σ)∗ and all w ∈ Σ∗,

γ ⇒k
R w if and only if [q, �, w] �k+|w| [q, γ, �].

Before proving the claim, look at the example again, and note that as a corollary,

S ⇒k
R w if and only if [q, �, w] �k+|w| [q, S, �],

Notation: [state, stack, input]
bot→top

S

S

S

S

S

S

S

a a abb εεifif then then else

7

3

6

2

1

5

4

13

Correctness of shift-
reduce construction

PDA Configurations:
 [state, stack, input]

bot→top

PDA Moves:
[q, γα, ay] ⊢ [q’, γβ, y]

(like slide 5, except stack reversed)

14

(via |w| shifts)

15

16

Both top-down & bottom up PDA’s above are
nondeterministic. With a carefully designed grammar, and by
being able to “peek” ahead at the next input symbol, it may
be possible to tell deterministically which action to take. The
CFG's for which this is possible are called LL(1) (top-down
case) or LR(1) (shift-reduce case) grammars, and are
important for programming language design.
Every language accepted by a deterministic PDA has an LR
(1) grammar, but not all grammars for a given language are
LR(1), and for some CFL's no grammar is LR(1).

Notes

17

∀y, [p, α, x] ⊢* [q, β, ε] if and only if [p, α, xy] ⊢* [q, β, y]

Why? PDA can’t test “end of input” or “peek ahead,” so
presence/absence of y is invisible. (A bit like the “context-
free” property in a CFG.)

∀γ, [p, α, x] ⊢* [q, β, ε] implies [p, γα, x] ⊢* [q, γβ, ε]
Why? γ is “buried” on bottom of stack, so computation
allowed in its absence is still valid in its presence. Note the
converse is, in general, false! Computation on right might pop
part of γ, then push it back, whereas one at left would block at
the attempted pop. Important special case: α = β = ε:

Some PDA Facts

p ↝x↝ q allowed on empty stack ⇒ allowed on any stack

18

S → ε | a S b

Q: What L solves this equation?

Answer:

Compare to:

L ⊆ {a,b}*
L = {ε} ∪ {a} • L • {b}

L = { anbn | n≥ 0 }

19

S → ε | Sgrammar_for_X | S S

Q: What L solves this equation?

Answer:

Compare to:

L, X ⊆ Σ* (X fixed, e.g. “palindromes” or “odd len”)

L = {ε} ∪ X ∪ L • L
Alt phrasing: the smallest set containing ε and all of X and is closed under concatenation?

L = X*

20

L22 =L22 = the set of input strings x that allow M to go from
state 2 to state 2, starting & ending with empty stack.In English?

An equation?

21

22

Grammar start symbol = Astart-state, final-state

Goal: Apq gives inputs allowing M to
go from state p to state q, starting &
ending with empty stack.

PDA to CFG, general construction
I. WLOG, assume PDA:
 a) has only one final state
 b) accepts only when stack is empty, and
 c) all transitions either push or pop, never both/neither

read nothing/no transition

p to q via any intermediate r

1. read a + push X
2. go from r to s on empty

stack, so X re-exposed
3. read b + pop X

23

NB: G can be simplified. E.g., remove A12, A21 & rules using them, since, e.g., ∄ x ∈ Σ* s.t. A21 ⇒* x.

This is just fine in the construction, since there is also no x s.t. [2, ε, x] ⊢* [1, ε, ε].
Easier to construct useless rules locally than to sort out such ramifications globally.

24

I.e., Apq gives
set of inputs
that allow M
to go from
state p to
state q,
starting &
ending with
empty stack.

(and fact that M’s stack is empty when it enters F)

25

Case (i):
exercise

I.e., Apq gives set of inputs that
allow M to go from state p to
state q, starting & ending with
empty stack.

XX

Stack

 Time

26

I.e., Apq gives set of inputs that
allow M to go from state p to
state q, starting & ending with
empty stack.

XX

Stack

 Time

27

Summary: PDA ≡ CFG
Pushdown stack conveniently allows simulation of
recursion in CFG

E.g., {anbn} or {wwR} or balanced parens, etc.: push
some, match later

Nondeterminism sometimes essential
 - e.g., “guess middle”; there is no “subset constr” for NPDA

G ⊆ M: guess deriv., using stack carefully (⇒L or ⇒R)
 - basis for parsers in most compilers, e.g.

M ⊆ G: Apq = {x| go from p to q on empty stack}

28

