Context-free Languages
and Pushdown
Automata

Finite Automata vs CFLs

E.g., {a"b"}

Regular

From earlier results:
Languages

every regular language is a CFL
but there are CFLs that are not regular

Can we extend Finite Automata to equal CFLs!?
l.e., get a machine-like characterization of CFLs?

CF bt mof agida . 270", WWR spans)

A key feature:
. —_
recursion

Recursion’s twin:
—_—
a pushdown stack

Snashlc
SQ%SA\‘SL|"

/b

P

Pushdown sufficient? intuitively, yes:
atp™ 1 push e
Pof [woteh b

WoR : pugh typet
A+ Widdla, (Gusss!)

Flip shhtse Popunted

LA B

Pu shdoum Auwlowaton.

M= (@, 5T, Sz.f)
e, 'st‘kd ZM)
z i)

[ooe s s o (Stashafuisd)
2, 6R Shutfs X

FEBL decept shates

®: qu‘ xf‘z - ZQ"P&

P:{ﬁ,q} Q,i-DQéQ:
~@ e
J 9:

Example @

M CAM Vet ncty gﬁa_t:_z_ Uik

Yé T‘ on f, M af dar 'MLV

JE TRV «Z,

d U\- u‘.w1n- WI“

} r‘ V\ L) 420 Vu é@
2 4, o A et

(\) (o = > 3

@) A, = €
® Vi mey

(r':&\)b‘ & S(%",Wiﬂ, a)

fo s o, be T e

e 4; = at)41.00 =bt
(‘DX’ ou

Meccate w if 10, ¢F
Lim)z §weZt) Mascpton]

Alternate way to define this:

A PDA Configuration (stack top on left):
(state, stack, input)
A PDA Move:
{p, at, wx) (q, bt, x)

ifaIpgqe Qacelu{eltel*we
>u{e}, x € 2* s.t.(q,b) € O(p,w,a)

Multiple moves:
-k :exactly k steps
—* :0 or more steps

M can reach q with Yel * on its stack
after reading we2.* if

{qo, &, W) F*(q,Y, &
M accepts w if above, and qeF
L(M) = { we2* | M accepts w }

E)‘MPL,‘. 4 Cﬂ,_f,“jd.'hs
ofg M ahore on Twput W= aa bb

! 5,.,4.,) Cemaining ivPui-

'o‘ 14 s, : ae) > (ta")‘.s‘f'{‘!‘)

= 1,_ *::t > (ga,a) 6 ‘ltgﬂ,q
r‘-. z‘ Sz- ‘* > -~ 0"

ry ¢ 1‘ Sg ° $Q_& bb > (23:¢) € S(zub‘)
e §3 | Sy = $4

% . > (g4.€) & 3(1‘,5,0
s 99 |S¢ < 4nE)e &2
ol | Oomeesma

top of stack @ r'ight5

L Which move
E.g.,“M can reach gz with $ on its stack after reading ab?”,

and “M can reach q4 with € on stack reading a?b?” and
“M accepts a’b?”.

Every CFL is accepted
by some PDA

Every regular language is accepted by some PDA
(basically, just ignore the stack...)

Above examples show that PDAs are sufficiently
powerful to accept some context-free but non-regular
languages, too

In fact, they can accept every CFL:

(13

Proof |: the book’s “top down” parser (next)

Proof 2: “bottom up,’ (aka “shift-reduce”) parser (iater)

PDAs accept all CFLs

“Top-Down”

For any CFG G=(V, Z, R, S), build /
PDAM = (Q,2,T,09, qo, F), where

~ g, £ S$

Q = {90, 9, Gaccept} a, a—€ vaeX

F[=Vu3Su VU g, A—a for all
{$} ($eVu2) rules A—a in R

F = {qaccept}, and g, $—e

0 is defined by the diagram :

|dea: on input w, M nondeterministically picks a leftmost derivation
of w from S. Stack holds intermediate strings in derivation (left
end at top); letters in 2 on top of stack matched against input.

«—>
matched on
input stack

FIGURE 2.23
Implementing the shorthand (r, xyz) € (¢, a, s)

| s—asbSle |

@

S =LaSbS
g, €S$ =>| aaSbSbS
a, a—e =1 2abSbS
b, b—¢ = aabbS
e, S—=aShS = aabbaSbS
g, S—¢€ = aabbab$
e, $—¢ = aabbab

Q000000

Top-Down Parser

accept
Qaccep

(3

§<—>§
State|Stack|Input|Deriv
qdo g aabbab
q S$| aabbab
q aSbS$ aabbab<> @
q SbS$| abbab
q |[aSbSbS$ abbab‘> @
q SbSbS$ bbab
q bSbS$ bbab‘>@
q SbS$ bab
q bS$ bab‘>CD
q S$ ab
q aSbS$ ab‘>®
q SbS$ b
q bS$ b‘>@
q S$ €
. - @
3
d

Input accepte

10

PDAs accept all CFLs

“Bottom-Up” / “Shift-Reduce”

For any CFG G=(V, 2, R, S), build “shift”
PDAM=(Q,3,T,0,qoF),where a,g—a, Vac2

Q = {90, 9, Gaccept}
[=V u 2 u {$} ($2Vul) p BES q E’$S_>E

F = {Qaccept}, and . B_'A - (A—’B)ER
O is defined by the diagram “reduce” s
|dea: on input w, M nondeterministically picks a rightmost %

¢

derivation backwards, from w to S. Shift input onto stack
or “reduce” top few symbols at each step. inread

input

11

| s—asble

Shift-Reduce Parser

J

S =raSbs (@)

=r aSbaSbS (o)

shift: =g aSbaSb (5)
a, Ea

b t—b =g aSbab (@

reduce =g aaSbSbab @
g €S

 2SbS—rS =g aaSbbab (@)

=g aabbab ()

E > §

State| kcatS |Input|Deriv
qo |[€ aabbab
q [$ aabbab
q [$a abbab
q [$aa bbab
q $aaS bbab >®
q [$aaSb bab
q [$aaSbS bab %%
q [$aS bab
q [$aSb ab
q $aSba b
q [$aSbaS b >@
q [$aSbaSb 3
q [$aSbaSbS 3 %%
q $aSbS (3 <>@
q_[$S 3

Qaccept € 3

Input accepted

12

Forall y € (V UX)* and all w € ¥*,

— ad v =% wif and only if [q, e, w] ¥l [¢,~, €]
— ifbthen S
— if bthen S else S % =, as (7)\
— € y = aifbthen Selse S (6)
Tqo, e, aifbthenifbthenaelsea] F) —r 4 !f bthen 5else a 5 (5)
(¢, 8, aifbthenifbthenaelsea] + —r 4 !f o then S slse a (4)
¢, $a, ifbthenifbthenaelsea] —r 4 !f o then !f bthen Selsea — (3)
[q, $ali, bthenifbthenaelsea] —r 4 !f o then !f bthena Selsea (2)
. =, aifbthenifbthen aelse a (1)
. 6 more shifts ~ /
[q, $aifbthenifbthena, elsea] F
[q, $aifbthenifbthenas, elsea] F
[¢q, $aifbthenifbthen S, elsea] F
[q, $aifbthen S, elsea] F
[¢, $aifbthen S else, al] F
[¢q, $aifbthen Selsea, e] F
[q, $aifbthen Selseas, e] F
[q, $aifbthen Selse S, e] F
[q, $as, e] F
(¢, $5, e] F
\[Qaa £, €]

Notation: [state, stack, input | H H ” | - | ” | I ” " |
[bot—’top P]] a if b || then ‘L“Ll then a ‘il else || a €
13

Correctness of shift-
reduce construction

CrAmM: Forall v € (V UX)* and all w € ¥,

o j% w if and only if g, €, w] At fw) q,7, €.

p

PDA Configurations:

[state, stack, input]
bot—top

PDA Moves:
[9, Y&, ay] - [q, VB, Y]

like slide 5, except stack reversed
_ P J

COROLLARY: L(M) = L(G)

Proof:

S =% w if and only if [q, e, w] FFT1vl ¢, S, €]

14

CraM: Vy € (VUX)*, Vw € X%, v =% w only if [q, e, w] FFHwl g, v, €].
Basis (k = 0):

Y :>(])% w sO 77 = w, SO [Q7 €, w] |_|w| [Q777 6] (Via |W| ShiftS)
Induction: Assume the claim for some k > 0. Suppose

k+1
Y =R

Let its first step beEIa e (VUX)*, dx,y € X* s.t.

v = Ay =5 afy = Razy—wsoaAjRozBin]

reduce moves’

By the Enduction hypothesis] and the definition of ’

([g.6,2] 417! g, 08, and(g, a8, -

g, @A, €]

So
g, €, zy] FFTIl g, a8, y] H! (g, A, y] Y [q, Ay, €]

Thus

et L] |

g, €, W] q,, €]

CrLaM: Vy € (VUX)*, Vw € B, v =% w if [q, e, w] FFHl g, v, €].

Proof of this direction is similar, and is left as an exercise.

Hint: Again induction on k; consider the last “reduce” step in the PDA's
computation.

16

Notes

Both top-down & bottom up PDA’s above are
nondeterministic. With a carefully designed grammar, and by
being able to “peek’” ahead at the next input symbol, it may
be possible to tell deterministically which action to take. The
CFG's for which this is possible are called LL(l) (top-down
case) or LR(1) (shift-reduce case) grammars, and are
important for programming language design.

Every language accepted by a deterministic PDA has an LR
(1) grammar, but not all grammars for a given language are
LR(1), and for some CFL's no grammar is LR(1).

17

Some PDA Facts

Vy,[[p, x, x] * [q, B, E]j if and only if [[p, , xy] —*[q, B, y]j

Why? PDA can’t test “end of input” or “peek ahead,’ so
presence/absence of y is invisible. (A bit like the “context-
free” property in a CFG.)

vy,[[p, x, x] —*[q, B, E:U implies [[p, Y&, x] —* [q, YB, E]j

Why!? Y is “buried” on bottom of stack, so computation
allowed in its absence is still valid in its presence. Note the
converse is, in general, false! Computation on right might pop
part of Y, then push it back, whereas one at left would block at
the attempted pop. Important special case: & = = €:

[p ~*~ q allowed on empty stack = allowed on any stackj

18

Q: What L solves this equation?
L € {a,b}*
L={e}u{a}sLe{b} -

Answer:
L={a"b" | n> 0}
Compare to:
S— €| aSh _

Q: What L solves this equation!?

L, X C Z* (X fixed, e.g.“palindromes’ or “odd len”)

L={efuXulL-L .

Alt phrasing: the smallest set containing £ and all of X and is closed under concatenation?

Answer:
L = X*

Compare to:
S = € | Sgrammar for x | S'S .

20

(,€-»¢
o 2 P

La,= § %] L2 €x] lfﬁz,f,t];

L22 = the set of input strings x that allow M to go from
state 2 to state 2, starting & ending with empty stack.

An equation!

Laa ® {f; v Lyclaz v (o L.‘.)
S=» €| s3| (s)
Lcmy £

In English?

21

£49¢

"‘22. = Rg buafors
L § tf:,lse"u»“o.)

{ty v ‘-""L" v iLz"

f2a® £ | Aaahey { ko)
Ry 2 <A, Al Raa

Lia, =4 2 ¢y,

L“ 'y

22

PDA to CFG, general construction

l. WLOG, assume PDA:
a) has only one final state
b) accepts only when stack is empty, and
c) all transitions either push or pop, never both/neither

L ¥ pege®

Goal: Apq gives inputs allowing M to
go from state p to state q, starting &
“~ ending with empty stack.

oo

= £ Vee&

<« read nothing/no transition

Rpy -9 Prer Pfrg Veqrea

<« p to q via any intermediate r

\/a,‘ézv" @

Xél

@4,:-;:

b X2<¢

|.read a + push X
<«—2.go from r to s on empty
stack, so X re-exposed

3.read b + pop X

Grammar start S)’mbOI = Astart-state,ﬁnal-state

23

(,€>¢ fhoo = £ Vel
() @Y)rg O ,f

A“J .

c’/"’i Ara_ﬂ‘-
VQ,‘sz“' @ b, X< “7‘6 . | P’?r Art Vf‘f‘4
X6l 2,5 ->X

ﬂ., "9A'I l a !)An_nz,

ﬁft_, *ATQ b &(z @A(\ A 2 lA‘.-..n\.z
Paxr sbz i”"’“za *n | P2a Bz
\ €82 2¢ q,,:n“‘ 21‘9“:.'6“:2.,%‘:.‘

NB: G can be simplified. E.g., remove A2, A21 & rules using them, since, e.g., A x € 2* s.t. Ay =™ x.

This is just fine in the construction, since there is also no x s.t. [2, & x] *[I, €, €].
Easier to construct useless rules locally than to sort out such ramifications globally.

24

Claim ¥ x &Z% Yoz Am:?'z
M [ee 2] VL] —

Cev L¢g) = LEM)
5.%«. LCG)t {x\ A-n..‘c, J"‘?

t\,“ ‘Cful " "J = [fua ¢, ‘}}
= L(M)

t dafw. (and fact that M’s stack is empty when it enters F)

l.e.,Apq gives
set of inputs
that allow M
to go from
state p to
state q,
starting &
ending with

empty stack.

25

c lq.n“ V N\ & 2* vﬂ’@ Ar 3 4 l.e.,Apq gives set of inputs that
—0 3

allow M to go from state p to

. % state q, starting & ending with
‘ﬂ [P, €&, *j - Lz; ‘)‘] empty stack.

C (anen <ﬁ> o‘tdhv"m oboviy Lﬁ (C)
badi®

/A'&»' e M\poﬂ-’b&;wkn’hprm

A"-ﬂ‘ X muetbe Kst,fsf

EP:C;‘] ‘-:[L ""3

]r‘z

el Re|
caso () — iﬁl‘ o A £ - Ar’ A(:] é:‘v |
exercis<> un\e"t ®a R" _diading ¢ (‘\"
cousdiv?)
=ayb R, ="y Stack
Yy Mef
77T Dney] W see] .
Smee ["‘»4‘15:1:[%)(,76] ;.*L's,x,)] P) 4 '

O~ 5+ (4,6¢] Time =?

26

o l&ﬂu V A & z* vfo,(@ Ar 3 4 l.e.,Apq gives set of inputs that
S— 0 3

allow M to go from state p to

. % state q, starting & ending with
‘?’ [P, €&, 2] - Lz; ‘)‘] empty stack.

¢ d.‘v.‘d:m‘f claim K | 5:*-"&, (t)
by iwduckion on #of Shepsin |

Dasiy o 0 Shepr) wn £ vukiiu g
twd 2 K&l Yo Sheps | e

S"‘* avla. i (&mi) %rs :
on {9 Mot (cCane 0) “““P*’?
ot s :
mr?{'md,ot ateyp, ¢ @
Tw cotet, I H, & Coved nialron
ao\la- AQ%-) APY “’8 ot Stack

P cone il Ap' 'QA.A“; o,

This conetvutren dored ann jut Time =

ltke Mo tapdly yvangion | PO WMove
Mu.’(’ M.

27

Summary: PDA = CFG

Pushdown stack conveniently allows simulation of
recursion in CFG

E.g., {a"b"} or {wwR} or balanced parens, etc.: push
some, match later

Nondeterminism sometimes essential
- e.g.,‘guess middle”; there is no “subset constr” for NPDA

G C M:guess deriv., using stack carefully (=L or =)
- basis for parsers in most compilers, e.g.

M C G: Ayq = {X| go from p to q on empty stack}

28

