Context-free Languages and Pushdown Automata

Finite Automata vs CFLs

From earlier results:
every regular language is a CFL but there are CFLs that are not regular
Can we extend Finite Automata to equal CFLs?
l.e., get a machine-like characterization of CFLs?

CF but not Regular $\underline{a}^{n} b^{n}, w^{W}, \cdots a=b, \ldots$
A key feature: \qquad
Soasb/E

$$
s \rightarrow a s_{a}|b s b| \varepsilon
$$

Pushdown sufficient? intuitively, yes:
$a^{\prime \prime} b^{n}:$ push $a^{\prime} d$
pop/mated bis
ww R: push input At Middle, (Goes!)
flip state top/match

Pushdoun Automaton

$$
\begin{aligned}
& M=\left(Q, \Sigma_{i} \Gamma_{1} \delta_{1} g_{0}, F\right) \\
& Q \text { is fiorte ent (estut) } \\
& \Sigma \cdots \text { linpat } \\
& \Gamma \cdots \cdot . . \text { (stachapestax) }
\end{aligned}
$$

$\sigma_{0} \in Q$ stactalat
$F \subseteq \mathbb{Q}$ accept states

M can reach stat eg with $r \in \Gamma^{*}$ on its stael after reading w°
if $\exists w_{1} w_{2} \ldots w_{m} \in \Sigma_{2}$
at $w_{2} w_{1} \cdot w_{2} \ldots w_{m}$ $\exists r_{0} r_{1} \ldots r_{m} \in Q$ $\exists \iota_{0}, \ldots A_{m} \in r^{*}$
(1) $r_{0}=q_{0}$,
(2) $A_{0}=\varepsilon$
(3) $\forall i=0 \ldots m-1$

$$
\left(r_{i, 1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)
$$

for sane $a, b \in \Gamma_{2}, t \in \Gamma^{* *}$ Wish $\Delta_{i}=$ at,$s_{i+1}=b t$
(4) $\gamma=\Delta_{m}$

Meceqto w if $r_{m} \in F$
$L(M)=\left\{\omega_{6} \in \Sigma^{*} \mid\right.$ Macepto $\left.\omega\right\}$

Alternate way to define this:

A PDA Configuration (stack top on left):〈state, stack, input〉
A PDA Move:

$$
\begin{gathered}
\langle\mathrm{p}, \mathrm{at}, \mathrm{wx}\rangle \vdash\langle\mathrm{q}, \mathrm{bt}, \mathrm{x}\rangle \\
\text { if } \exists \mathrm{p}, \mathrm{q} \in \mathrm{Q}, \mathrm{a} \in \Gamma \cup\{\varepsilon\}, \mathrm{t} \in \Gamma^{*}, \mathrm{w} \in \\
\Sigma \cup\{\varepsilon\}, \mathrm{x} \in \Sigma^{*} \text { s.t. }(\mathrm{q}, \mathrm{~b}) \in \delta(\mathrm{p}, \mathrm{w}, \mathrm{a})
\end{gathered}
$$

Multiple moves:
\vdash^{k} : exactly k steps
\vdash^{*} : 0 or more steps
M can reach q with $\gamma \in \Gamma^{*}$ on its stack after reading $w \in \Sigma^{*}$ if

$$
\langle\mathbf{q} 0, \varepsilon, \mathbf{w}\rangle \vdash^{*}\langle\mathbf{q}, \gamma, \boldsymbol{\varepsilon}\rangle
$$

M accepts w if above, and $q \in F$

$$
L(M)=\left\{w \in \Sigma^{*} \mid M \text { accepts } w\right\}
$$

Example: A computation
of M above on input $w=a a b b$

E.g., " M can reach q_{3} with $\$$ on its stack after reading $a^{2} b^{2}$ ", and " M can reach q_{4} with ε on stack reading $a^{2} b^{2}$ " and "M accepts $a^{2} b^{2}$ ".

Every CFL is accepted by some PDA

Every regular language is accepted by some PDA (basically, just ignore the stack...)
Above examples show that PDAs are sufficiently powerful to accept some context-free but non-regular languages, too

In fact, they can accept every CFL:
Proof I: the book's "top down" parser (next)
Proof 2: "bottom up," (aka "shift-reduce") parser (later)

PDAs accept all CFLs "Top-Down"

For any CFG $G=(V, \Sigma, R, S)$, build PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, where

$$
Q=\left\{q_{0}, q, q_{\text {accept }}\right\}
$$

$$
\Gamma=\vee \cup \Sigma \cup\{\$\}(\$ \notin \vee \cup \Sigma)
$$

$$
F=\left\{q_{\text {accept }}\right\}, \text { and }
$$

δ is defined by the diagram
Idea: on input w, M nondeterministically picks a leftmost derivation of w from S. Stack holds intermediate strings in derivation (left end at top); letters in Σ on top of stack matched against input.

FIGURE 2.23

Implementing the shorthand $(r, x y z) \in \delta(q, a, s)$

PDAs accept all CFLs "Bottom-Up" /"Shift-Reduce"

For any CFG G=(V, $, ~ R, S)$, build "shift"
PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, where $Q=\left\{q_{0}, q, q_{\text {accept }}\right\}$
$\Gamma=\vee \cup \Sigma \cup\{\$\}(\$ \notin \vee \cup \Sigma)$
$F=\left\{q_{\text {accept }}\right\}$, and
δ is defined by the diagram
Idea: on input w, M nondeterministically picks a rightmost derivation backwards, from w to S. Shift input onto stack or "reduce" top few symbols at each step.

Correctness of shiftreduce construction

Claim: For all $\gamma \in(V \cup \Sigma)^{*}$ and all $w \in \Sigma^{*}$,

$$
\gamma \Rightarrow{ }_{R}^{k} w \text { if and only if }[q, \epsilon, w] \vdash^{k+|w|}[q, \gamma, \epsilon] .
$$

Corollary: $L(M)=L(G)$

Proof:

PDA Configurations: [state, stack, input] bot \rightarrow top
PDA Moves:
$[q, \gamma \alpha, a y] \vdash\left[q^{\prime}, \gamma \beta, y\right]$
(like slide 5, except stack reversed)

$$
S \Rightarrow{ }_{R}^{k} w \text { if and only if }[q, \epsilon, w] \vdash^{k+|w|}[q, S, \epsilon]
$$

Claim: $\forall \gamma \in(V \cup \Sigma)^{*}, \forall w \in \Sigma^{*}, \gamma \Rightarrow{ }_{R}^{k} w$ only if $[q, \epsilon, w] \vdash^{k+|w|}[q, \gamma, \epsilon]$. Basis $(k=0)$:

$$
\gamma \Rightarrow{ }_{R}^{0} w \text { so } \gamma=w, \text { so }[q, \epsilon, w] \vdash^{|w|}[q, \gamma, \epsilon] \quad \text { (via }|w| \text { shifts) }
$$

Induction: Assume the claim for some $k \geq 0$. Suppose

$$
\gamma \Rightarrow{ }_{R}^{k+1} w
$$

Let its first step be $A \rightarrow \beta . \exists \alpha \in(V \cup \Sigma)^{*}, \exists x, y \in \Sigma^{*}$ s.t.

$$
\gamma=\alpha A y \Rightarrow_{R} \alpha \beta y \Rightarrow_{R}^{k} x y=w \text { so } \alpha A \Rightarrow_{R} \alpha \beta \Rightarrow_{R}^{k} x
$$

By the induction hypothesis, and the definition of 'reduce moves')

$$
[q, \epsilon, x] \vdash^{k+|x|}[q, \alpha \beta, \epsilon] \text { and }[q, \alpha \beta, \epsilon] \vdash[q, \alpha A, \epsilon]
$$

So

$$
[q, \epsilon, x y] \vdash^{k+|x|}[q, \alpha \beta, y] \vdash^{1}[q, \alpha A, y] \vdash|y|[q, \alpha A y, \epsilon]
$$

Thus

$$
[q, \epsilon, w] \vdash^{k+1+|w|}[q, \gamma, \epsilon]
$$

Claim: $\forall \gamma \in(V \cup \Sigma)^{*}, \forall w \in \Sigma^{*}, \gamma \Rightarrow_{R}^{k} w$ if $[q, \epsilon, w] \vdash^{k+|w|}[q, \gamma, \epsilon]$.
Proof of this direction is similar, and is left as an exercise. Hint: Again induction on k; consider the last "reduce" step in the PDA's computation.

Notes

Both top-down \& bottom up PDA's above are nondeterministic. With a carefully designed grammar, and by being able to "peek" ahead at the next input symbol, it may be possible to tell deterministically which action to take. The CFG's for which this is possible are called $\mathrm{LL}(1)$ (top-down case) or LR(I) (shift-reduce case) grammars, and are important for programming language design.
Every language accepted by a deterministic PDA has an LR (I) grammar, but not all grammars for a given language are $\operatorname{LR}(\mathrm{I})$, and for some CFL's no grammar is LR(I).

Some PDA Facts

$$
\begin{aligned}
& \forall y,[p, \alpha, x] \vdash^{*}[q, \beta, \varepsilon] \text { if and only if }[p, \alpha, x y] \vdash^{*}[q, \beta, y] \\
& \text { Why? PDA can't test "end of input" or "peek ahead," so } \\
& \text { presence/absence of } y \text { is invisible. (A bit like the "context- } \\
& \text { free" property in a CFG.). } \\
& \forall \gamma,[p, \alpha, x] \vdash^{*}[q, \beta, \varepsilon] \text { implies }[p, \gamma \alpha, x] \vdash^{*}[q, \gamma \beta, \varepsilon] \\
& \text { Why? } \gamma \text { is "buried" on bottom of stack, so computation } \\
& \text { allowed in its absence is still valid in its presence. Note the } \\
& \text { converse is, in general, false! Computation on right might pop } \\
& \text { part of } \gamma, \text { then push it back, whereas one at left would block at } \\
& \text { the attempted pop. Important special case: } \alpha=\beta=\varepsilon \text { : }
\end{aligned}
$$

$$
\mathrm{P} \rightarrow \mathrm{x} \rightarrow \mathrm{q} \text { allowed on empty stack } \Rightarrow \text { allowed on any stack }
$$

Q : What L solves this equation?

$$
\begin{aligned}
& \mathrm{L} \subseteq\{a, b\}^{*} \\
& \mathrm{~L}=\{\varepsilon\} \cup\{\mathrm{a}\} \cdot \mathrm{L} \cdot\{\mathrm{~b}\}
\end{aligned}
$$

Answer:

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

Compare to:

$$
S \rightarrow \varepsilon \mid a S b
$$

Q : What L solves this equation?

$$
\begin{aligned}
& L, X \subseteq \Sigma^{*}(X \text { fixed, e.g."palindromes" or "odd len") } \\
& L=\{\varepsilon\} \cup X \cup L \cdot L
\end{aligned}
$$

Alt phrasing: the smallest set containing ε and all of X and is closed under concatenation?
Answer:

$$
L=X^{*}
$$

Compare to:
$S \rightarrow \varepsilon\left|S_{\text {grammar_for_x }}\right| S S$

M (2) $\leftrightarrows \begin{aligned} & \substack{, \varepsilon \rightarrow r \\ j,<\rightarrow \varepsilon}\end{aligned}$

$$
L_{22}=\left\{x \mid[2, \varepsilon, x] H^{*}[2, \varepsilon, \varepsilon]\right\}
$$

In English? $\mathrm{L}_{22}=$ the set of input strings x that allow M to go from An equation?

$$
\begin{aligned}
L_{22} & =\{\varepsilon\} \cup L_{22} \cdot h_{22} \cup\left(\cdot L_{22} \cdot\right) \\
S & \rightarrow \varepsilon|S S|(S)
\end{aligned}
$$

$$
L(M): \phi
$$

$L_{22}-a_{1} \quad$ afom

$$
\begin{aligned}
L_{11}= & \{\varepsilon\} \cup L_{11} \cdot L_{11} \cup \sum L_{22} \varepsilon \\
& A_{22} \rightarrow \sum\left|A_{22} A_{22}\right|\left(A_{22}\right) \\
& A_{11} \rightarrow \varepsilon\left|A_{11} A_{11}\right| A_{22} \\
L_{12} & =\phi=L_{21}
\end{aligned}
$$

PDA to CFG, general construction
I. WLOG, assume PDA:
a) has only one final state
b) accepts only when stack is empty, and
c) all transitions either push or pop, never both/neither

$A_{p p} \rightarrow \sum \quad \forall p \in Q$

$$
\begin{aligned}
& A_{11} \rightarrow L \\
& A_{22} \rightarrow 2
\end{aligned}
$$

$A_{p q} \rightarrow A_{p r} A_{r q} \forall p q r \leqslant 4$

$$
A_{11} \rightarrow A_{1}, A_{1},\left|A_{12} A_{2}\right|
$$

$A_{12} \rightarrow A_{1}, A_{1} 2 \mid A_{12} A_{22}$

$p a \times r$	$s b q$	
1	$\varepsilon \$ 2$	2ε
2	$<(2$	$2)$

$A_{21} \rightarrow A_{21} A_{11} \mid A_{22} A_{21}$
$A_{22} \rightarrow A_{21} A_{12} \mid A_{22} A_{22}$
$2<(22) 2 \quad A_{22} \rightarrow\left(A_{22}\right)$
NB: G can be simplified. E.g., remove $A_{12}, A_{21} \&$ rules using them, since, egg., $\nexists x \in \Sigma^{*}$ st. $A_{21} \Rightarrow^{*} x$.
This is just fine in the construction, since there is also no x st. $[2, \varepsilon, x] \vdash^{*}[I, \varepsilon, \varepsilon]$.
Easier to construct useless rules locally than to sort out such ramifications globally.

Claim $\forall x \in \Sigma^{*} \quad \forall p i g \in Q A p q \Rightarrow x$
I.e., $A_{p q}$ gives set of inputs that allow M if $[p, \varepsilon, x] \vdash^{*}[q, \varepsilon, \varepsilon]$ to go from state p to state q, starting \& ending with empty stack.
Cor $L(G)=L(M)$

$$
\begin{aligned}
& =\{x \mid[\text { int, } \varepsilon, x] \mapsto[\text { final, s, } \varepsilon\}\} \\
& =\{(M)
\end{aligned}
$$

A defoe. (and fact that M's stack is empty when it enters F)

Claim \longrightarrow) induct on deriv length
basis
$A_{P_{q}} \Rightarrow x:$ impossible; nothing to prove
$A_{\text {F }} \Rightarrow{ }^{\prime} x:$ mu the $x=\varepsilon, P=8$

$$
[p, c, \varepsilon] \nleftarrow[\varepsilon, \varepsilon, \varepsilon]
$$

$$
\begin{aligned}
& x=a y b \& A_{r s} \Rightarrow^{\prime} y \\
& \text { by ind }[r, \varepsilon, y] \vdash^{*}[s, s, \varepsilon] \\
& \text { simere }[p, \varepsilon, \text { arb }]+[r, X, y b] \vdash^{*}[s, x, b] \\
& \operatorname{Pinc} \xrightarrow{\text { [ic }}(\mathrm{F}[q, \varepsilon, \varepsilon]
\end{aligned}
$$

I.e., $A_{p q}$ gives set of inputs that allow M to go from state p to state q , starting \& ending with empty stack.

Time \rightarrow

Claim $\forall x \in \Sigma^{*} \quad \forall p i g \in Q A p q \Rightarrow x$
le., $A_{p q}$ gives set of inputs that
\qquad allow M to go from state p to of l $[p, 2, x] F[2,3,2]$ state q, starting \& ending with empty stack.
F direction of claim is similar, by induction on \# of steps in H^{*} basis: o steps, use ε pulling
ind: $K * 1>0$ steps, them Stack either is (case) on is not (case ii) empty at some intumedict step. In case i, I.H. 2 conctustion give $A_{p q} \rightarrow A_{p r} A_{p q}$ etc. In cane ii, $A_{p q} \rightarrow a A_{\text {Pg }} b$ etc.

This construction \& proof are just

Time \Rightarrow like the text't religion, so more details the.

Summary: PDA \equiv CFG

Pushdown stack conveniently allows simulation of recursion in CFG
E.g., $\left\{a^{n} b^{n}\right\}$ or $\left\{w w^{R}\right\}$ or balanced parens, etc.: push some, match later

Nondeterminism sometimes essential

- e.g.,"guess middle"; there is no "subset constr" for NPDA
$G \subseteq M$: guess deriv., using stack carefully ($\Rightarrow \mathrm{L}$ or \Rightarrow_{R})
- basis for parsers in most compilers, e.g.
$M \subseteq G: A_{p q}=\{x \mid$ go from p to q on empty stack $\}$

