
Context-free
Grammars and

Languages

1

Example
strings in L(G)

(“start” or “sentence”)

(“rules”)

Another
string in L(G)

A derivation tree or
parse tree in G

2

i.e., “context-free”

(only; “produces” or “may be rewritten as”)

:

(reflexive, transitive closure
of ⇒ ; “0 or more steps”)

= = =

k≥00 1

0 1

Not
ati

on

3

Note that L(G) is non-regular

Ex
am

ple

⋮

ε

4

We’ll see later that
Ltwo={ww|w ∈Σ*}

is not context free. At first
glance, you might think that
adding a new start symbol S’
and a rule

S’→SS
to G2 would generate Ltwo, but
it doesn’t; it generates all strings
in Ltwo plus many others, since
derivations from the two S’s are
not coordinated. (Why not? It’s
context-free; what happens to
one S can’t influence the other.)

Example

5

:

Example

6

Trees, Derivations and
Ambiguity

7

A treeA grammar

3 derivations correspond to same tree (same rules being used in the

same places, just written in different orders in the linear derivation)

1) E => P+E => a+E => a+P => a+a

2) E => P+E => P+P => a+P => a+a

3) E => P+E => P+P => P+a => a+a

But only one leftmost derivation corresponds to it

(and vice versa). (more in HW?)

8

Another grammar for the same language:

E → E+E | E*E | (E) | a

This grammar is ambiguous: there is a string in L(G5) with two
different parse trees, or, equivalently, with 2 different leftmost

derivations. Note the pragmatic difference:
in general, (a+a)*a != a+(a*a); which is “right”?

Fig 2.6: Two parse trees for a+a×a in grammar G5

9

 Fig 2.6: Two parse trees for a+a×a in grammar G5

10

The “E, P” grammar again

This grammar is unambiguous.
(Why? Very informally, the 3 E rules generate P((‘+’∪’*’)P)*
and only via a parse tree that “hangs to the right”, as shown.)

But it has another undesirable feature: Parse tree
structure does not reflect the usual precedence of
* over +. E.g., tree at lower right suggests
“a * a + a == a * (a + a)”

11

A more complex grammar, again the same language. This one is unambiguous
and its parse trees reflect usual precedence/associativity of plus and times.

12

G is ambiguous
L is inherently ambiguous, meaning every G for L is ambiguous

Can we always tweak the grammar
to make it unambiguous?

No! Language L is a CFL; grammar at left. Easy
to see this G is ambiguous–strings of the form
anbncn can come from the i=j (AC) or j=k (DB)
path. Hard to prove, but true, that every G for
this L is also ambiguous. Intuitively, a grammar
can only match a’s & b’s or b’s & c’s, not both.
As a related point, { anbncn | n>0 } is not CFL.

G

13

Some closure results
for CFLs

14

Theorem:
The set of context-free languages is closed
under ∪, •, and *

Corollary:
All regular languages are CFLs

Proof Sketch:
Directly give simple CFLs for ∅, {ε}, and
{a} for each a ∈ Σ. Combine them using the
above theorem.

(Aside:
We’ll later prove that CFLs are not closed under
intersection or complementation.)

15

V2

G1
G2

G G G

Proof: Closure under Concatenation

16

G

G G Then, for some x, y ε Σ*

A key issue in this direction of the proof is that, since
V1 ∩ V2 = ∅, there is no “crosstalk” between the two
sub-grammars: any derivation in G from S1 is also a

derivation in G1, and likewise S2/G2, so derivation (*)
above in G can be split into (**) in G1 & G2.

17

