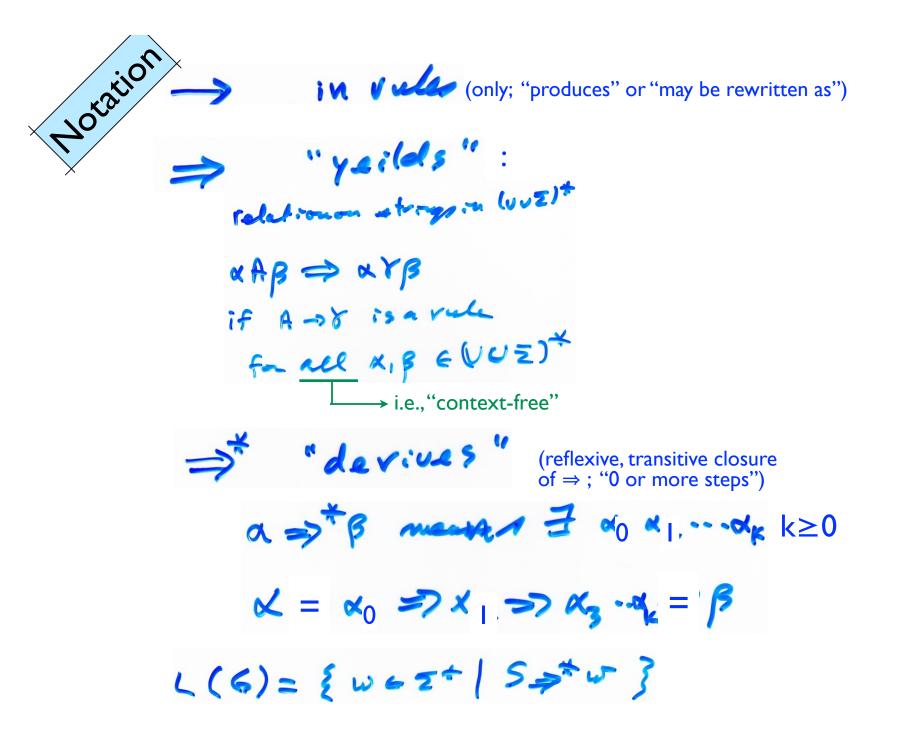
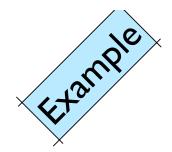
Context-free Grammars and Languages

$$\begin{array}{c} \underbrace{ \left(\begin{array}{c} \operatorname{contrast} t - \operatorname{frace} 1 \operatorname{anymaps} \right) \\ \overline{x} = \{ a_{1} + i + i, \{ r_{1} \} \} \\ \overline{x} = \{ a_{1} + i + i, \{ r_{1} \} \} \\ \overline{x} = \{ a_{1} + i + i \} \\ \overline{x} = 2 \\ \overline$$



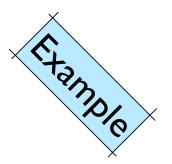


G = (V, Z, R, S)V= 253 Z- {a, 13 R: 57a56 E 5=> 951 7 96 5=> a55=>aa566+qabb L(G) = & an 6" (n>0} Note that L(G) is non-regular

We'll see later that $L_{two} = \{ww | w \in \Sigma^*\}$ is not context free. At first glance, you might think that adding a new start symbol S' and a rule

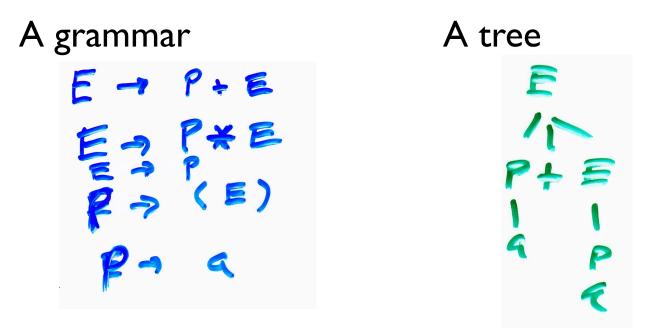
S'→SS

to G_2 would generate L_{two} , but it doesn't; it generates all strings in L_{two} plus many others, since derivations from the two S's are not coordinated. (Why not? It's context-free; what happens to one S can't influence the other.)



63: mabore but add So alb L (63) all palordom E w & 5+ | we w? 3

Trees, Derivations and Ambiguity



3 derivations correspond to same tree (same rules being used in the same places, just written in different orders in the linear derivation)

I) E => P+E => a+E => a+P => a+a2) E => P+E => P+P => a+P => a+a3) E => P+E => P+P => P+a => a+a

But only one *leftmost* derivation corresponds to it (and vice versa). (more in HW?)

Another grammar for the same language:

 $E \rightarrow E+E \mid E^*E \mid (E) \mid a$

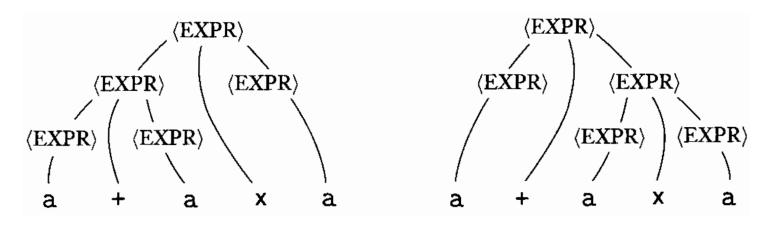


Fig 2.6: Two parse trees for $a+a\times a$ in grammar G_5

This grammar is ambiguous: there is a string in L(G₅) with two different parse trees, or, equivalently, with 2 different leftmost derivations. Note the pragmatic difference: in general, (a+a)*a != a+(a*a); which is "right"?

E = E+F E*E a E>E+E am biguous ⇒a+E Za+ (EXPR) (EXPR) (EXPR) (EXPR) (EXPR) $\langle EXPR \rangle \Rightarrow q + q + q$ (EXPR) (EXPR) (EXPR) $\langle EXPR \rangle$ a a 5 × $a + a \times a$ $3 + (4 \times 5)$ Fig 2.6: Two parse trees for $a+a\times a$ in grammar G_5 Left most deriv E + E I E E x 🗲 2 4+ EXED EXADE +E = A DE+q = A

The "E, P" grammar again

This grammar is unambiguous.

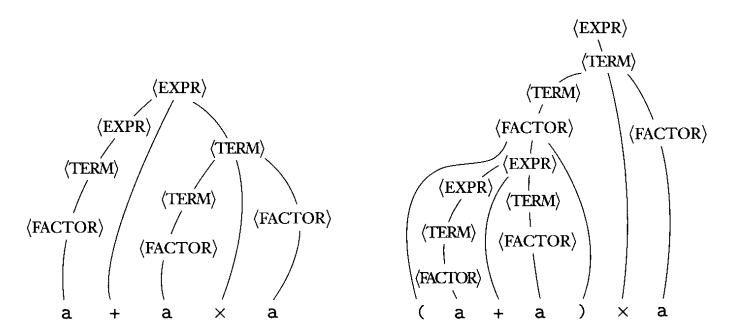
(Why? Very informally, the 3 E rules generate $P((`+`\cup`*`)P)^*$ and only via a parse tree that "hangs to the right", as shown.) But it has another undesirable feature: Parse tree structure does not reflect the usual precedence of * over +. E.g., tree at lower right suggests "a * a + a == a * (a + a)"



EXAMPLE 2.4

Consider grammar $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$. V is $\{\langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle\}$ and Σ is $\{a, +, \times, (,)\}$. The rules are $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle TERM \rangle | \langle TERM \rangle$ $\langle TERM \rangle \rightarrow \langle TERM \rangle \times \langle FACTOR \rangle | \langle FACTOR \rangle$ $\langle FACTOR \rangle \rightarrow (\langle EXPR \rangle) | a$

The two strings a+axa and (a+a)xa can be generated with grammar G_4 . The parse trees are shown in the following figure.



A more complex grammar, again the same language. This one is unambiguous *and* its parse trees reflect usual precedence/associativity of plus and times.

$L = \{ a^{i} b^{j} c^{k} | i = j = j = k \}$

S-> AC |DBA-7 a Ab / EC-9 cC |ED-9 a D |EB = bBc |C $a^{10}6^{10} c^{22}$ $a^{10}6^{10} c^{10}$

Can we always tweak the grammar to make it unambiguous?

No! Language L is a CFL; grammar at left. Easy to see this G is ambiguous-strings of the form $a^{n}b^{n}c^{n}$ can come from the i=j (AC) or j=k (DB) path. Hard to prove, but true, that every G for this L is also ambiguous. Intuitively, a grammar can only match a's & b's or b's & c's, not both. As a related point, { $a^{n}b^{n}c^{n}$ | n>0 } is not CFL.

G is ambiguous L is *inherently ambiguous*, meaning every G for L is ambiguous

Some closure results for CFLs

<u>Theorem:</u>

The set of context-free languages is closed under \cup , •, and *

<u>Corollary:</u> All regular languages are CFLs

Proof Sketch: Directly give simple CFLs for \emptyset , { ϵ }, and {a} for each $a \in \Sigma$. Combine them using the above theorem.

(Aside:

We'll later prove that CFLs are *not* closed under intersection or complementation.)

Proof: Closure under Concatenation $G_i = (V_i, \mathbf{Z}, R_i, S_i)$ be 2 CFG's with vin $V_2 = \Phi$ Lts & VIUV2 Build new grown 6 = (V, Z, R, 9) V= V. . V2 u {s} R= R, UR2 U { 5-75, 52 } YX64 YY662 5, = X 4 5, = Y ·: S= S, S, = * × 52 = × 4 .: 4, · 62 <u>S</u> L(6)

Suppose
$$S \xrightarrow{a}_{G} w$$

 $* \underbrace{S \xrightarrow{a}_{G} S_{1} \underbrace{s}_{2} \xrightarrow{a}_{G} w}_{S_{1}}$ Then, for some x, y $\in \Sigma^{*}$
 $S_{1} \underbrace{s}_{2} \xrightarrow{a}_{L} x \underbrace{s}_{2}$
 $usny \circ aly rule from G_{1}$
 $x \underbrace{S}_{2} \xrightarrow{a}_{L} x y = w$
 $usny \circ aly G_{2} rule$
 $S_{1} \xrightarrow{a}_{L} x \operatorname{ru} G_{r}$
 $S_{2} \xrightarrow{a}_{L} x \operatorname{ru} G_{r}$
 $S_{3} \xrightarrow{a}_{Y} \operatorname{ru} G_{2}$
 $L(G_{2}) \leq L_{1} \cdot L_{2}$

A key issue in this direction of the proof is that, since $V_1 \cap V_2 = \emptyset$, there is no "crosstalk" between the two sub-grammars: any derivation in G from S₁ is also a derivation in G₁, and likewise S₂/G₂, so derivation (*) above in G can be split into (**) in G₁ & G₂.