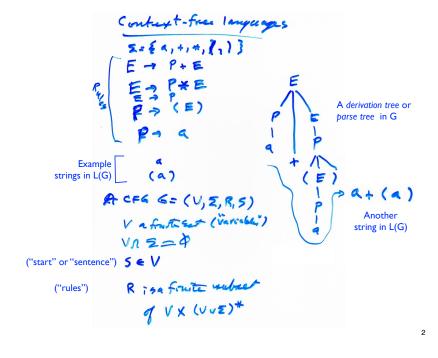
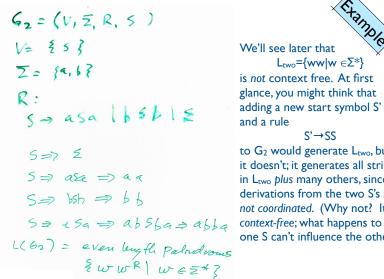
Context-free Grammars and Languages

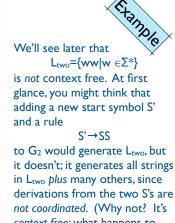


Note that L(G) is non-regular

3

4





one S can't influence the other.)

5-alb { w +5+ | w= w ? }

Trees, Derivations and **Ambiguity**

A grammar

A tree

3 derivations correspond to same tree (same rules being used in the same places, just written in different orders in the linear derivation)

- 1) E => P+E => $a+E => a+P => a+a \leftarrow$
- 2) $E \Rightarrow P + E \Rightarrow P + P \Rightarrow a + P \Rightarrow a + a$
- 3) $E \Rightarrow P+E \Rightarrow P+P \Rightarrow P+a \Rightarrow a+a$

But only one *leftmost* derivation corresponds to it (and vice versa). (more in HW?)

Another grammar for the same language:

$E \rightarrow E+E \mid E*E \mid (E) \mid a$

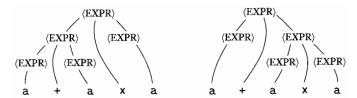


Fig 2.6: Two parse trees for a+a×a in grammar G₅

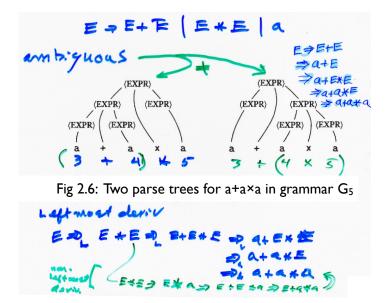
This grammar is *ambiguous*: there is a string in $L(G_5)$ with two different parse trees, or, equivalently, with 2 different leftmost derivations. Note the pragmatic difference: in general, (a+a)*a != a+(a*a); which is "right"?

The "E, P" grammar again

This grammar is unambiguous.

(Why? Very informally, the 3 E rules generate $P(('+'v'*')P)^*$ and only via a parse tree that "hangs to the right", as shown.) But it has another undesirable feature: Parse tree structure does not reflect the usual precedence of * over +. E.g., tree at lower right suggests "a*a*a*a*==a*(a*a*a)"

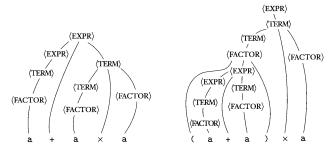
11



EXAMPLE 2.4

Consider grammar $G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle)$. V is $\{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle \}$ and Σ is $\{a, +, \times, (,)\}$. The rules are $\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle$ $\langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle$ $\langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid \text{a}$

The two strings $a+a\times a$ and $(a+a)\times a$ can be generated with grammar G_4 . The parse trees are shown in the following figure.



A more complex grammar, again the same language. This one is unambiguous and its parse trees reflect usual precedence/associativity of plus and times.

10

12

Can we always tweak the grammar to make it unambiguous?

No! Language L is a CFL; grammar at left. Easy to see this G is ambiguous—strings of the form $a^nb^nc^n$ can come from the i=j (AC) or j=k (DB) path. Hard to prove, but true, that every G for this L is also ambiguous. Intuitively, a grammar can only match a's & b's or b's & c's, not both. As a related point, { $a^nb^nc^n \mid n>0$ } is not CFL.

G is ambiguous

L is inherently ambiguous, meaning every G for L is ambiguous

Some closure results for CFLs

14

16

13

15

Theorem:

The set of context-free languages is closed under \cup , •, and *

Corollary:

All regular languages are CFLs

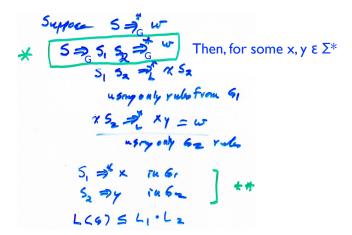
Proof Sketch:

Directly give simple CFLs for \emptyset , $\{\epsilon\}$, and $\{a\}$ for each $a \in \Sigma$. Combine them using the above theorem.

(Aside:

We'll later prove that CFLs are *not* closed under intersection or complementation.)

Proof: Closure under Concatenation



A key issue in this direction of the proof is that, since $V_1 \cap V_2 = \emptyset$, there is no "crosstalk" between the two sub-grammars: any derivation in G from S_1 is also a derivation in G_1 , and likewise S_2/G_2 , so derivation (*) above in G can be split into (**) in $G_1 \& G_2$.