
CSE 322,  Fall 2010

Nonregular Languages
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Cardinality

Two sets have equal cardinality if there is a bijection 
(“1-to-1” and “onto” function) between them

A set is countable if it is finite or has the same cardinality 
as the natural numbers

Examples: 

Σ* is countable (think of strings as base-|Σ| numerals)

Even natural numbers are countable:  f(n) = 2n

The Rationals are countable
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More cardinality facts

If f: A → B in an injective function (“1-1”, but not 
necessarily “onto”), then 

     |A| ≤ |B|

(Intuitive: f is a bijection from A to its range, which is a 
subset of B, & B can’t be smaller than a subset of itself.)

Theorem (Cantor-Schroeder-Bernstein):

If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|
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The Reals are Uncountable

Suppose they were

List them in order

Define X so that its ith 
digit ≠ ith digit of ith real

Then X is not in the list

Contradiction

A detail: avoid .000...,  .9999... in X

int 1 2 3 3 5
1
2
3
4
5
6

0. 0 0 0 0 0
3. 1 4 1 5 9
0. 3 3 3 3 3
0. 5 0 0 0 0
2. 7 1 8 2 8
41. 9 9 9 9 9

X 1. 2 4 1 3 8 ...

...

...

...
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Number of Languages in Σ* 
is Uncountable

Suppose they were

List them in order

Define L so that  
wi ∈ L ⇔ wi ∉ Li

Then L is not in the list

Contradiction

I.e., the powerset of any 
countable set is 
uncountable

w1

1
w2 w3 w4 w5 w6

L1

L2

L3

L4

L5

L6

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 1

L 1 0 1 1 1 0 ...

...

...

...
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Are All Languages Regular?

Σ is finite (for any alphabet Σ) 
Σ* is countably infinite
Let Δ = Σ ∪ {“ε”,  “∅”,  “∪”,  “•”,  “*”,  “(”,  “)”}
Δ is finite, so Δ* is also countably infinite
Every regular lang. R = L(x) for some x∈Δ*
∴ the set of regular languages is countable
But the set of all languages over Σ (the 
powerset of Σ*) is uncountable
∴ non-regular languages exist!
(In fact, “most” languages are non-regular.)
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The same is true for any real “programming system” I can 
imagine – programs are finite strings from a finite alphabet, so 
there are only countably many of them, yet there are 
uncountably many languages, so there must be some you can’t 
compute...

Above is somewhat unsatisfying – they exist, but what does 
one “look like”?  What’s a concrete example?

Next few lectures give specific examples of non-regular 
languages.  And proof techniques to show such facts – for such 
and such a language, none of the infinitely many DFAs correctly 
recognize it.
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Some Examples
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Intuitively, a DFA accepting L3 must “remember” the entire 
left half as it crosses the middle.  “Memory” = “states”.  As 
|w|→∞, this will overwhelm any finite memory.  

We make this intuition rigorous below...
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L3 is not a Regular Language

Proof: For a DFA M=(Q,Σ,δ,q0,F), suppose M ends in the 
same state q ∈ Q when reading x as it does when reading y, 
x≠y.  Then for any z, either both xz and yz are in L(M) or 
neither is.

Let Σ={a,b}, |Q|=p, and pick k so that 2k > p.  Consider all 
n=2k length k strings w1, w2, ..., wn.  Consider the set of states 
M is in after reading each of these strings.  By the Pigeon 
Hole Principle there must be some state q ∈ Q and some 
wi≠wj such that both take M to q.  But then M must either 
accept both of wiwi and wjwi or neither.  In either case, 
L(M) ≠ L3, since one is in L3, but the other is not.
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In  pictures:
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NB: it’s true, but 
not sufficient, to 
say “xi≠xj”, since xj 
is not the left half.  

L3 = { ww | w ∈ {a,b}* } is not regular:
Alternate Proof

Assume L3 is regular. Let M=(Q,Σ,δ,q0,F) be a DFA 
recognizing L3.  Let p=|Q|.  Consider the p+1 strings
    xi = ai b, 0 ≤ i ≤ p.  
Again, by the Pigeon Hole Principle, ∃ q ∈ Q and 
∃ 0 ≤ i < j ≤ p s.t. M reaches q from q0 on both xi & xj.  
Since M accepts both xi xi and xj xj, it also accepts 
    xj xi = aj b ai b.  
But j>i, so total length is odd or both b’s in 
right half.  Either way, xj xi ∉L3, a contradiction. 
Hence L3 is not regular.
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Assume L3 is regular. Let M=(Q,Σ,δ,q0,F) be a DFA 
recognizing L3.  Let p=|Q|.  Consider the p+1 strings
    xi = ai b, 0 ≤ i ≤ p.  
Again, by the Pigeon Hole Principle, ∃ q ∈ Q and 
∃ 0 ≤ i < j ≤ p s.t. M reaches q from q0 on both xi & xj.  
Since M accepts both xi xi and xj xj, it also accepts 
    xj xi = aj b ai b.  
But j>i, so total length is odd or both b’s in 
right half.  Either way, xj xi ∉L3, a contradiction. 
Hence L3 is not regular.

NB: it’s true, but 
not sufficient, to 
say “xi≠xj”, since xj 
is not the left half.  

L3 = { ww | w ∈ {a,b}* } is not regular:
Alternate Proof

Note importance 
of “b”; without it, 
implication falls 
apart

... so what?  It’s all a’s, so in L3 if i+j is even...
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A third way:  
feed M many 
a’s;  eventually 
it will loop.  
Say  ai gets to 
q, then aj more 
revisits. 

Again, exploit 
this to reach a
(many)
contradictions
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Notes on these proofs
All versions are proof by contradiction: assume some DFA M accepts L3.  M of 

course has some fixed (but unknown) number of states, p.  All versions also relied on 
the intuition that to accept L3, you need to "remember" the left half of the string when 
you reach the middle, "memory" = "states", and since every DFA has only a finite 
number of states, you can force it to "forget" something, i.e., force it into the same state 
on two different strings.  Then a "cut and paste" argument shows that you can replace 
one string with the other to form another accepted string, proving that M accepts 
something it shouldn't.

Version 1 (slides 11-12): pick length so there are more such strings than states in M.
Version 2 (slides 13-14): pick increasingly long strings of a simple form until the same 

thing happens. This argument is a little more subtle, since the string length, hence 
middle, changes when you do the cut-and-paste, and so you have to argue that where 
ever the middle falls, left half ≠ right half.  Some cleverness in picking "long strings of a 
simple form" makes this possible; in this case the "b" in "aib" is a handy marker.

Version 3 (slide 15): Generalizing version 2, accepted strings longer than p always 
forces M around a loop.  Substring defining the loop can be removed or repeated 
indefinitely, generating many simple variants of the initial string.  Carefully choosing the 
initial string, you can often prove that some variants should be rejected.  Again, there is 
some subtlety in these proofs to allow for any start point/length for the loop.

Not all proofs of non-regularity are about "left half/right half", of course, so the above 
isn't the whole story, but variations on these themes are widely used.  Version 3 is 
especially versatile, and is the heart of the "pumping lemma", (next few slides).
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Those who cannot remember the 
past are condemned to repeat it.

   	
 	
 	
 	
 	

	
 	
 	
 	
 	
       -- George Santayana (1905) Life of Reason
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The Pumping Lemma

19



20



Ex
am

ple

- i

21



The Pumping Lemma

22



Proof:
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Key Idea: perfect squares become increasingly sparse,  
but PL => at most p gap between members

Example
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Idea: Pick big enough 
square so that gap to next 

is larger than the short 
piece the P.L. repeats
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Rec
all
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So, by closure of regular languages under
intersection, L cannot be regular

regular   not regular             regular ?

Of course, direct proof via Pumping Lemma is possible.  
E.g., a lot like the one for {anbn|n≥0}.  Alt way:

27



Example
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main(){return ((((0))));}

If C were regular, ∃p∀C programs ∃x,y,z, ...
e.g., x = ε, y = “m” :  pumps nicely, giving new func names

But C is not regular

L = C ∩ L(main(){return(*0)*;})

L is not regular: ∃p...
Let w = main(){return(p0)p;}
then if y ∈ (*, i≠1 gives unbalanced parens
          y ∉ (*, i≠1 gives an invalid prefix

C – the programming language – satisfies 
the pumping lemma, but is non-regular

regexp Similar 
results 

possible
 for C++, 

Java, 
Python,...
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A key issue:  how is L (in general, an infinite 
thing) “given” as input to our program?  
Some options:

E.g.,  give as input: # of states, 
list those in F,  size of Σ, a table 
giving δ(q,a) for each q,a, etc.
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x ∈ L L = ∅ L = Σ*

DFA O(n) O(n) O(n)

NFA (exercise) O(n) O(2n)

RegExp (exercise) (exercise) O(2n)

Java Prog Undecidable – think “halting problem”

Extended 
RegExp (¬)

Some Algorithm Qs
Given a string x and a regular language L, how hard is it 

to decide these questions? 

time at least           , where h > log n 
⋰2

2
222 h
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Some Algorithm Sketches

DFA/x ∈ L: read in DFA, simulate it step by step

DFA/L=∅: read DFA, build graph structure; depth-first-
search to see if F is reachable from q0; accept if not.

DFA/L=Σ*: apply DFA complement constr; do above

NFA/L=∅: like DFA/L=∅: 

NFA or regexp/L=Σ*: not like DFA case; 
do rexexp → NFA, NFA → DFA via subset constr
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“Extended” Regular Exprs

Regular languages are closed under ops other than ∪, •, *, e.g., 
∩, complement, and DROP-OUT.  We could add them to regexp 
syntax and still get only regular languages.  E.g.:

aa•(¬((a ∪ b)*(aaa ∪ bbb) (a ∪ b)*))  

denotes the strings starting with 2 a’s, followed by a string not 
containing 3 adjacent a’s or b’s.  (I think you did something like that 
in a homework, and it’s kind of a nuisance with plain regexp.)

Why don’t standard RegExp packages support this?  The added 
code is minor: just the closure-under-complement construction.

But the run-time cost is ...
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Visualize a fast, small computer, say:
    One petaflop (1015 ops sec-1)
    Femtometer (10-15) in diameter (~ size of a neutron)

Buy a few: say, enough to pack the visible universe
    Radius of visible universe: 
       1010 light years x π x 107 s/year x 3 x 108 m/s = 1026 m

     Volume: (1026)3 = 1078 m3

    # processors: 1078/(10-15)3  = 10123 (.1 yotta-googles)

Let it run for a little while, say 1010 years
      1010 yr x π x 107 s/yr x 1015 ops/s x 10123 processors

How much can we compute?

   = 10155 ops since the dawn of time    
                (somewhat optimistically)

Towers of twos  

2	
 = 2

22	
 = 4   

      	
 = 24 = 16

     	
 = 216 = 65536

      	
 ≈1019728

222

2222

22222
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Summary

There are (many) non-regular languages

Famous examples: {anbn|n>0}, {#a = #b}, {ww}, {C}, {Java}

Famous ways to prove:

Diagonalization

M in same state on 2 strings it should distinguish

One stylized way: Pumping Lemma

Closure Properties

Simple algorithmic problems can be astronomically slow
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