Notes on Midterm

Midterm scores

40 s	1
50 s	6
60 s	17
70 s	19
80 s	8
90 s	3

mean/median/mode 71/72/73

$$
\begin{aligned}
L & \leq\{a, b\}^{*} \\
L_{1} & :\{x \mid \exists c \in \Sigma s t, c x \in L\} \\
L_{2} & =\{x \mid \exists c \in \bar{z}, y \in \Sigma \% x=a y, y \in L\} \\
L & =\{\varepsilon, a, a b, a b a\} \\
L_{1} & =\{, \varepsilon, b, b a\} \\
L_{2} & =\{a, b, a a, b a, a a b, b a b, a a b, b a b a\} \\
L_{2} & =(a \cup b) \cdot(\text { regexp for } L) \\
& =\Sigma \cdot L
\end{aligned}
$$

Fallacious＂proof＂\＃｜

$$
\begin{aligned}
& L=\Sigma \cdot L_{1} \text { So by abytumen undu: } \\
& \phi=\phi \cdot x \\
& \text { Lisirequa } \\
& L=R_{v} L_{1} \\
& \Sigma^{*}=\text { そネしメ }
\end{aligned}
$$

Fallacious "proof" \#2
"All Language ane Eogulan"

$$
\begin{aligned}
& L=\left\{\begin{array}{ll}
\text { abs ain alta } \\
x_{1}, x_{2}, & x_{3} \ldots
\end{array}\right\} \\
& x_{1} \text { iss requbuexpr } \\
& \therefore L_{1}=\left\{x_{1}\right\} \text { is tequila } \\
& L_{K}=\left\{x_{1,}, x_{2}, x_{k}\right\} \text { is Dep. } \\
& r_{k} \\
& L\left(r_{k} \cup x_{k+1}\right)=\left\{x_{1} \ldots x_{k+1}\right\} \\
& \rightarrow 0 \xrightarrow{a} 0 \xrightarrow[\rightarrow]{b} 0^{b} 0 \xrightarrow{a}+0
\end{aligned}
$$

This correctly shows that each L_{k} is regular for each finite k, no matter how large. It does not show that L is regular; induction never "jumps" to the infinite "limit" case.

Fallacious "proof" \#3

Correct Construction

