
CSE 322,  Fall 2010
Nondeterministic

Finite State Machines
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Defn: For any X, Y ⊆ Σ*, define 
     X • Y = { xy | x ∈ X & y ∈ Y } 
Ex:

     X      = { a, ab }

     Y      = { ε, b, bb }

     X • Y = { a, ab, abb, abbb }

     Y • X = { a, ab, ba, bab, bba, bbab }

     note |X • Y| ≤ |X| • |Y| 

Concatenation
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Q:

• Is the class of regular languages closed 
under concatenation?

• Again, for Java programs, say, it’s not too 
hard to prove this.

• What about finite automata?  Inability to 
back up the input tape is one issue...
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An idea for closure under concatenation, but not 
clear how to do it – may need to stay in M1 for 
several visits to F before jumping to M2.  
E.g.:
       {even parity} • {exactly 5 1’s}
which 1 is 5th from end?
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101,          11    .
0101,        011    .

00101,      0011    .
111101,    11111    .

                        1010,      0110
                        10100,    01101
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L = { w in {a,b}* | 3rd letter from the right 
end of w is "a" }
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L = { w in {a,b}* | 3rd letter from the right 
end of w is "a" }
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to show M on w:
Accepts–show one
  path ending in F
Rejects–show all
  paths fail to end in F
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Example “guess & check”:
L = { an | n is a multiple of 2, 3, 5 or 7 }
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Guess Check

Note: equiv DFA has 2*3*5*7 
states and messy set of final states
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L = { w in {a,b}* | 3rd letter from the right 
end of w is "a" }
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(Non-)Example
L = { ap | p is prime }

a

εM:

Q: is M deterministic?
Q: Does M accept ap for every prime p?
Q: does L(M) = L?
Q: but, doesn’t it always guess right?
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Nondeterminism: How

• View it as a generator of a language

• View it as a recognizer of a language

- “build the tree”

- explore all paths

- guess-and-check
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Nondeterminism: Why
• Specifications: say, clearly & concisely, what, not how

• Precise, and often concise specification

- “do A or B, but I don’t yet know/don’t want clutter of saying 
which”

- Sometimes exponentially more concise - “3rd letter from end”

• Natural model of incompletely specified/partially known systems

- if correct wrt a partial spec, then correct wrt any 
implementation consistent with that spec

- “is state ‘reactor boiling / control rods out’ unreachable, even 
allowing for unknown behavior of subsystem X”?
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Kleene Star

• Defn:  L* = ∪n≥0 Ln

• Examples

i) Σ* : a simple special case

ii) L = { apb | p is prime}
L* = {ε} ∪ {ap

1 b ap2 b ... b apk b | k≥1, 
and each pi is prime}
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Closure under union
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No 
(may reject ε)
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or

30



No, may accept extra stuff (if M can 
loop back to start before reaching F)

or
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General strategy: such proofs are usually constructive, i.e., given a 
(generic) NFA N1, we construct a “new” NFA, N.  In this case:

[Notation changed slightly 
to match Thm 1.49 in 
Sipser; see it for careful 
description of N vs N1 ]

Then prove the correctness of the construction, i.e., that L(N) = 
(L(N1))*.  Proof idea: connect computation trace(s) of “old” NFA to 
ones in “new” NFA, where a “trace” means, recalling the definition 
of  “M could be in state q after reading w,” the/a sequence of states/
transitions/edges M follows/could follow on some input.

N1, “Old”: blue
N, “New”: blue + greenN1

N

q0         q1

Closure under *
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Closure under *, 
II
For the correctness proof, there are usually 2 directions, namely: 
(L(N1))* ⊆ L(N)  and L(N) ⊆ (L(N1))*

1)  (L(N1))* ⊆ L(N), or, equivalently, given any k ≥ 0 and any k strings x1, 
x2, ..., xk, each in L(N1), show that their concatenation x1•x2• ... •xk = x is in 
L(N).  For this direction,  let ri0, ri1, ri2, ..., rini be an accepting trace (in N1) 
for xi, 1 ≤ i ≤ k.  Note q1 = ri0, (why?) and rini ∈ F (why?) The key idea is 
that you can glue these together using the new start state and the new ε 
transitions (green state/arrows) to build an accepting trace in N for x.  
Namely: q0, r10, r11, r12, ..., r1n1,   r20, r21, r22, ..., r2n2, ...,  rk0, ..., rknk ∈ F.  This is a 
valid accepting trace in N since all transitions in that sequence are either 
transitions of N1, hence in N, or are ε transitions from a final state of N1 to 
N1’s start state q1 = r10 = r20 = ..., hence again in N.   ∴ x ∈ L(N).

N1

N

q0         q1

Trace really 
should be 
ri0, ai0, 
ri1, ai1, ... i.e. 
alternately 
∈Q, ∈Σ∪{ε}, 
but slides are 
small & I’m 
being lazy.
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Closure under *, 
III
2) L(N) ⊆ (L(N1))*, or equivalently, given any x in L(N), show that it can be 
broken into k ≥ 0 substrings x1, x2, ..., xk, (i.e., x = x1•x2• ... •xk) so that 
each is in L(N1).  For this direction, suppose q0 = r0, r1, r2, ..., rn ∈ F is an 
accepting trace (in N) for x.  Note that r1 = q1, since the only transition 
leaving q0 goes to q1 (and is labeled ε).  Let  x1 be the concatenation of all 
edge labels up to (but excluding) the  next green edge (i.e., an ε-move 
from a final state back to q1).  Note that x1 ∈ L(N1), since the included 
transitions are all present in N1 and run from its start state to a final 
state, so they are an accepting trace in N1.  Similarly, let x2 be the 
concatenation of all edge labels up to the next green edge, ..., and xk those 
after the last green edge.  By the same reasoning, each xi ∈ L(N1), for each 
1 ≤ i ≤ k.  Finally, note that x = x1•x2• ... •xk since the excluded transitions 
are all ε-moves.  ∴ x ∈ (L(N1))*                                                      QED

N1

N

q0         q1
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Closure under *,
Leftovers

There are a few points in the proof above that I deliberately 
didn’t address.  I strongly suggest that you think about them and 
see if you can fill in missing details and/or explain why they 
actually are covered, even if not explicitly mentioned.  I suggest 
you write it (but no need to turn it in).

• Are x = ε / k = 0 correctly handled, or do you need to say 
more?

• Is it a problem if N1’s start state is a final state?

• Is it a problem if N1 includes ε-moves from (some or all states 
in) F to q1?

• Is there anything else I omitted?
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Closure under 
Concatenation

Final states of M1 
no longer final
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NFA == DFA, 
or not?
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L = { w in {a,b}* | 3rd letter from the right 
end of w is "a" }
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{1,3}

A 3-state 
NFA

The equivalent 
23 = 8-state DFA, 
built as in 
Theorem 1.39
(4 states on left are not 
reachable from start state 
but are part of the DFA.)

An example transition:
δ’({1,2,3}, b) = δ(1,b) ∪ δ(2,b) ∪ δ(3,b) = {1} ∪ {3} ∪ ∅ = {1,3}
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L = { w in {a,b}* | 3rd letter from the right 
end of w is "a" }
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Exercise:  apply 
the construction 
to the NFA 
below.  
Note: You will 
not get the DFA 
above (but it will 
be equivalent). 
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CSE 322
Intro to Formal Models in CS

Simulation of NFAs by DFAs: Notes on the Proof of Theorem 1.39

W. L. Ruzzo 15 Oct 10

The text’s assertion that the construction given in the proof of Theorem 1.39 (1st ed: 1.19) is “obviously
correct” is a little breezy. Here is an outline of a somewhat more formal correctness proof. I will only handle
the case where the NFA has no �-transitions. Notation is as in the book.

For any x ∈ Σ∗, define

QN,x = {r ∈ Q | N could be in state r after reading x}, and
QM,x = the state R ∈ Q� that M would be in after reading x.

The key idea in the proof is that these two sets are identical, i.e., that the single state of the DFA faithfully
reflects the complete range of possible states of the NFA. The proof is by induction on |x|.

BASIS: (|x| = 0.) Obviously x = �. Then

QN,� = {q0} = q�0 = QM,�.

The first and third equalities follow from the definitions of “moves” for NFAs and DFAs, respectively, and
the middle equality follows from the construction of M .

INDUCTION: (|x| = n > 0.) Suppose QN,y = QM,y for all strings y ∈ Σ∗ with |y| < n, and let x ∈ Σ∗

be an arbitrary string with |x| = n > 0. Since x is not empty, there must be some y ∈ Σ∗ and some a ∈ Σ
such that x = ya. For any r ∈ Q,

N could be in state r after reading x = ya (1)
⇔ there is some r� ∈ Q such that N could be in r� after reading y and r ∈ δ(r�, a) (2)
⇔ r ∈

�

r�∈QN,y

δ(r�, a) (3)

⇔ r ∈ δ�(QN,y, a) (4)
⇔ r ∈ δ�(QM,y, a) (5)
⇔ r ∈ QM,x (6)

The equivalence of (1) and (2) follows from the definition of “moves” for NFAs: the last step must be a move
from some state reached after reading y. The equivalence of (2) and (3) is just set theory. The equivalence
of (3) and (4) follows from the definition of δ�. The equivalence of (4) and (5) follows from the induction
hypothesis. The equivalence of (5) and (6) follows from the definition of “moves” for DFAs.

Given the equivalence established above, it’s easy to see that L(N) = L(M), since N accepts x if and
only if it can reach a final state after reading x, which will be true if and only if QN,x contains a final state,
which happens if and only if QM,x ∈ F �.
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No ε-
moves
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No ε-
moves

Yes, ε-
moves.

NB: do ε-
moves before 
start, after 
other moves, 
not both 
before & after 
each move.
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Notes on Subset 
Construction:
1) only the top 6 
states are reachable 
from the start state, 
but all 16 are 
required by the 
construction.
2) ε moves come 
after Σ moves.   E.g., 
   δ'({q2},1) = ∅, 
not {q4}.
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