CSE 322, Fall 2010
 Nondeterministic Finite State Machines

Concatenation

Defn: For any $X, Y \subseteq \Sigma^{*}$, define

$$
X \cdot Y=\{x y \mid x \in X \& y \in Y\}
$$

Ex:

$$
\begin{aligned}
& X \quad=\{\mathrm{a}, \mathrm{ab}\} \\
& Y \quad=\{\varepsilon, \mathrm{b}, \mathrm{bb}\} \\
& X \cdot Y=\{\mathrm{a}, \mathrm{ab}, \mathrm{abb}, \mathrm{abbb}\} \\
& Y \cdot X=\{\mathrm{a}, \mathrm{ab}, \mathrm{ba}, \mathrm{bab}, \mathrm{bba}, \mathrm{bbab}\} \\
& \text { note }|X \cdot Y| \leq|X| \cdot|Y|
\end{aligned}
$$

Powers

$$
\begin{aligned}
& L^{2}=L \cdot L \\
& L^{3}=L \cdot L \cdot L \\
& \vdots \\
& L^{\prime}=L \\
& L^{0}=\{\varepsilon\} \\
& \forall n \geqslant L^{n}= \begin{cases}L \cdot L^{n-1} & \text { if } n \geqslant 1 \\
\& s\} & \text { if } n=0\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\text {Eg }} \Sigma^{2}=\{w| | w \mid=2\} \\
& \Sigma^{n}=\{w| | w \mid=n\} \\
& \left(\sum u\{\varepsilon\}\right)^{n}=\{w| | w \mid \leq n\}
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \leq \Sigma^{*} \\
& X \cdot Y=\{x \cdot y \mid x \in X \& y \in Y\}
\end{aligned}
$$

Examples
Loddparity L Loddpanty $=L_{\text {eum }}$.

$$
\begin{aligned}
& X, Y \leq \Sigma^{*} \\
& X \cdot Y=\{x \cdot y \mid x \in X \& y \in Y\} \\
& \text { Examples } \\
& \text { Loddparity } \cdot \text { Loddparty }=\text { Lexm }^{*} \\
& -\{0\}^{*} \\
& \text { Lodd parity } \cdot \text { Leven }=\text { Lodd }
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \leq \Sigma^{*} \\
& X \cdot Y=\{x \cdot y \mid x \in X \& y \in Y\} \\
& \text { Examples } \\
& \begin{aligned}
& L_{\text {Oddparity }} \cdot \text { Loddparity }=L_{\text {eum }} \\
&-\{0\}^{*}
\end{aligned} \\
& \text { Lodd par. Ty Leven }=\text { Lodd }
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \leq \Sigma^{*} \\
& X \cdot Y=\{x \cdot y \mid x \in X \& y \in Y\} \\
& \text { Examples } \\
& \begin{aligned}
L_{\text {oddparity }} \cdot \text { Loddparity }=\text { Leven } \begin{aligned}
& -\{0\}^{*}
\end{aligned}
\end{aligned} \\
& \text { Lond par. Ty Leven }=\text { od }
\end{aligned}
$$

$$
\begin{aligned}
& \left.2^{*} \cdot \phi=d \quad\right] \text { yes }
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \leq \Sigma^{*} \\
& X \cdot Y=\{x \cdot y \mid x \in X \& y \in Y\} \\
& \text { Examples } \\
& \begin{aligned}
L_{\text {oddparity }} \cdot \text { Loddparity }=\text { Lavm }^{-\{0\}^{*}}
\end{aligned} \\
& \text { Lodd par.ty } \text { Leven }=\text { Lodd }
\end{aligned}
$$

$$
\begin{aligned}
& \left.2^{*} \cdot \phi=d \quad\right] \text { yes } \\
& X \cdot Y \stackrel{?}{=} Y \cdot x \\
& 7 \text { always? }
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \leq \Sigma^{*} \\
& X \cdot Y=\{x \cdot y \mid x \in X \& y \in Y\} \\
& \text { Examples }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lodd par.ty } \text { Leven }=\text { Lodd }_{\text {od }}
\end{aligned}
$$

$$
\begin{aligned}
& \left.2^{*} \cdot \phi=d \quad\right] \text { yes } \\
& X \cdot Y \stackrel{?}{=} Y \cdot x \\
& \{0\} .\{1\} \neq\{1\} \cdot\{0\} \quad \begin{array}{l}
\text { alwan the }
\end{array}
\end{aligned}
$$

$\underbrace{\circ}$

- Is the class of regular languages closed under concatenation?
- Again, for Java programs, say, it's not too hard to prove this.
- What about finite automata? Inability to back up the input tape is one issue...

An idea for closure under concatenation, but not clear how to do it - may need to stay in M1 for several visits to F before jumping to M_{2}.
E.g.:
\{even parity\} • \{exactly 5 I's\}
which I is 5th from end?

(1) DFA as a recoguizer.
(2) $\quad \begin{array}{r}. . .1 \frac{g e n e r a t o v ~}{000110001}\end{array}$
(3) A different kikel of quewretor:

(1) DFA as a recognizer.
(2) $\cdots \cdots \frac{g e n e r a t o r}{000110001}$
(3) A different kike of gareeretor:

figure 1.27
(4) Q. What would it mean/hourcould we define an equivalent recogniser A. Non determinism

FIGURE 1.29
nondeterminesfice
A finite \&tate muchine

$$
\hat{M}=(Q, \Sigma, \delta, q, F)
$$

when is su.set (stats)
$-q \cdot \in Q$ startatats
$-\Sigma$ is afinite ent (alphaber)

- $F \leq Q$ Findetates

Accepiong etato
S: $Q \times \overline{2} \rightarrow Q$ transition
function

$$
\delta: Q \times\left(\Sigma_{u}\{\varepsilon\}\right) \rightarrow 2^{Q} \quad \begin{aligned}
& \text { transition } \\
& \text { fumpion }
\end{aligned}
$$

E.g. for frybz? M

$$
\delta\left(q_{1}, 0\right)=\left\{g_{1}\right\}
$$

$$
\delta\left(q_{1} 11\right)=\left\{q 1 q_{2}\right\}
$$

$\delta\left(q_{2}, 1\right)=\alpha$
$L=\left\{w\right.$ in $\{a, b\}^{*} \mid$ 3rd letter from the right end of w is " a " \}

$L=\left\{w\right.$ in $\{a, b\}^{*} \mid$ 3rd letter from the right
end of w is "a" $\}$

FIGURE 1.31

DEGN Mishty st in
Miends/in state q afta
reading $\omega \in \Sigma^{*}$ if
(1) $\omega=\omega_{1} \omega_{2} \ldots \omega_{n}$
where $w_{i} \in \sum u\{\varepsilon\}$
(2) ヨatate $r_{0}, r_{1}, r_{2} \cdots r_{n} \in \mathbb{Q}$

4t.
(a) $r_{0}=q_{0}$
(b) $\forall 1 \leq i \leq n$

$$
r_{i} \leqslant \delta\left(r_{i-1}, w_{i}\right)=k_{f}
$$

$$
\text { (}) r_{n}=8
$$

Fugt: qis unigne

Def
M accepts $w^{-} \in \Sigma^{*} \Leftrightarrow$ th
Stare, of, reached by M after
reading w is an accepting stank, lie., $q \in F$.

Def
The language recognized by M,

$$
L(M)=\left\{w \in \Sigma^{*} \mid M_{\text {accepts }} w\right\} \text {. }
$$

Note
Every M recognizes exactly One language. Implicitly,
?? $\begin{aligned} & \text { it "recognizes" both strings } \\ & \text { it must accept and those it } \\ & \text { must reject. }\end{aligned}$
to show M on w:
Accepts-show one path ending in F Rejects-show all paths fail to end in F

Example "guess \& check": $L=\left\{a^{n} \mid n\right.$ is a multiple of $2,3,5$ or 7$\}$

Guess
Check

$L=\left\{w\right.$ in $\{a, b\}^{*} \mid$ 3rd letter from the right end of w is " a " \}

(Non-)Example

$$
L=\left\{a^{p} \mid p \text { is prime }\right\}
$$

$\mathrm{Q}:$ is M deterministic?
Q : Does M accept ap for every prime p ?
Q : does $\mathrm{L}(\mathrm{M})=\mathrm{L}$?
Q: but, doesn't it always guess right?

Nondeterminism: How

- View it as a generator of a language
- View it as a recognizer of a language
- "build the tree"
- explore all paths
- guess-and-check

Nondernining

- Specifications: say, clearly \& concisely, what, not how
- Precise, and often concise specification
- "do A or B, but I don't yet know/don't want clutter of saying which"
- Sometimes exponentially more concise - "3rd letter from end"
- Natural model of incompletely specified/partially known systems
- if correct wrt a partial spec, then correct wrt any implementation consistent with that spec
- "is state 'reactor boiling / control rods out' unreachable, even allowing for unknown behavior of subsystem X '?

Kleene Star

- Defn: $L^{*}=U_{n \geq 0} L^{n}$
- Examples
i) Σ^{*} : a simple special case
ii) $L=\{a \mathrm{~Pb} \mid p$ is prime $\}$

$$
\begin{aligned}
& \mathrm{L}^{*}=\{\varepsilon\} \cup\left\{\mathrm{a}_{1} \mathrm{~b}^{\mathrm{b}} \mathrm{P}_{2} \mathrm{~b} \ldots \mathrm{~b} \mathrm{a}_{\mathrm{k}} \mathrm{~b} \mid \mathrm{k} \geq \mathrm{l},\right. \\
& \text { and each } \left.\mathrm{p}_{\mathrm{i}} \text { is prime }\right\}
\end{aligned}
$$

Closure under union

Given NFA M, can build one far $L(M)^{*}$?

Given NFA M, can build one far $L(M)^{*}$?

Given NFA M, can build one for $L(m)^{*}$?

Given NFA M, can build one for $L(m)^{*}$?
 or

Given NFA M, can build one for $L(M)^{*}$?

or

No, may accept extra stuff (if M can loop back to start before reaching F)

Given NFA M, can build one far $L(M)^{*}$?

Given NFA M, can build one far $L(M)^{*}$?

Closure under *

General strategy: such proofs are usually constructive, i.e., given a (generic) NFA N_{1}, we construct a "new" NFA, N. In this case:
[Notation changed slightly to match Thm I. 49 in Sipser; see it for careful description of N vs N_{l}]

$$
\begin{aligned}
& \mathrm{N}_{1} \text {,"Old": blue } \\
& \mathrm{N}, \text { "New": blue + green }
\end{aligned}
$$

Then prove the correctness of the construction, i.e., that $L(N)=$ $\left(\mathrm{L}\left(\mathrm{N}_{\mathrm{I}}\right)\right)^{*}$. Proof idea: connect computation trace(s) of "old" NFA to ones in "new" NFA, where a "trace" means, recalling the definition of "M could be in state q after reading w," the/a sequence of states/ transitions/edges M follows/could follow on some input.

Closure under *
 ,

For the correctness proof, there are usually 2 directions, namely: $\left(\mathrm{L}\left(\mathrm{N}_{\mathrm{I}}\right)\right)^{*} \subseteq \mathrm{~L}(\mathrm{~N})$ and $\mathrm{L}(\mathrm{N}) \subseteq\left(\mathrm{L}\left(\mathrm{N}_{\mathrm{I}}\right)\right)^{*}$

Trace really should be rio, aio, transitions (green state/arrows) to build an accepting trace in N for x. Namely: $q_{0}, r_{10}, r_{11}, r_{12}, \ldots, r_{1 n_{1}}, r_{20}, r_{21}, r_{22}, \ldots, r_{2 n_{2}}, \ldots, r_{k 0}, \ldots, r_{k n k} \in F$. This is a valid accepting trace in N since all transitions in that sequence are either transitions of N_{1}, hence in N, or are ε transitions from a final state of N_{1} to N_{1} 's start state $q_{1}=r_{10}=r_{20}=\ldots$, hence again in $N . \quad \therefore x \in L(N)$.

III

2) $L(N) \subseteq\left(L\left(N_{1}\right)\right)^{*}$, or equivalently, given any x in $L(N)$, show that it can be broken into $k \geq 0$ substrings $x_{1}, x_{2}, \ldots, x_{k}$, (i.e., $\left.x=x_{1} \cdot x_{2}{ }^{\bullet} \ldots \cdot x_{k}\right)$ so that each is in $L\left(N_{1}\right)$. For this direction, suppose $q_{0}=r_{0}, r_{1}, r_{2}, \ldots, r_{n} \in F$ is an accepting trace (in N) for x . Note that $\mathrm{r}_{1}=\mathrm{q}_{\mathrm{l}}$, since the only transition leaving q_{0} goes to q_{l} (and is labeled ε). Let x । be the concatenation of all edge labels up to (but excluding) the next green edge (i.e., an ε-move from a final state back to q_{I}). Note that $\mathrm{x}_{\mathrm{I}} \in \mathrm{L}\left(\mathrm{N}_{\mathrm{I}}\right)$, since the included transitions are all present in N_{1} and run from its start state to a final state, so they are an accepting trace in N N_{1}. Similarly, let x_{2} be the concatenation of all edge labels up to the next green edge, ..., and x_{k} those after the last green edge. By the same reasoning, each $x_{i} \in L\left(N_{1}\right)$, for each $\mathrm{I} \leq \mathrm{i} \leq \mathrm{k}$. Finally, note that $\mathrm{x}=\mathrm{x}_{\mathrm{l}}{ }^{\bullet} \mathrm{x}_{2}{ }^{\bullet} \ldots \cdot{ }^{\bullet} \mathrm{x}_{\mathrm{k}}$ since the excluded transitions are all ε-moves. $\therefore x \in\left(L\left(\mathrm{~N}_{\mathrm{I}}\right)\right)^{*}$

Closure under *,

Leftovers

There are a few points in the proof above that I deliberately didn't address. I strongly suggest that you think about them and see if you can fill in missing details and/or explain why they actually are covered, even if not explicitly mentioned. I suggest you write it (but no need to turn it in).

- Are $x=\varepsilon / k=0$ correctly handled, or do you need to say more?
- Is it a problem if N,'s start state is a final state?
- Is it a problem if N_{I} includes ε-moves from (some or all states in) F to q ?
- Is there anything else I omitted?

Closure under Concatenation

Final states of M_{1}
no longer final

NFA == DFA, or not?

FIGURE 1.29

Den

$$
M_{1} \& M_{2} \text { equivalent if } L\left(M_{1}\right)=6\left(M_{2}\right)
$$

Theorem 1.39
$\forall n f a N$ Jequivalut diu M

$$
\begin{aligned}
& \text { give } N=\left(Q, \Sigma, \delta, q_{0}, F\right) \\
& \text { build } M=\left(Q^{\circ}, \Sigma, \delta \delta^{\circ}, q_{0}^{\circ}, F^{\prime}\right)
\end{aligned}
$$

(Warm up: no ε-moves)

$$
\begin{aligned}
& Q^{\prime}=2^{Q} \\
& q^{\prime}=\{q 0\} \\
& F^{\prime}=\{R \subseteq Q \mid R \cap F \neq \varnothing\} \\
& \forall a \in \Sigma, \forall R \subseteq Q: \\
& S^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)
\end{aligned}
$$

$L=\left\{w\right.$ in $\{a, b\}^{*} \mid$ 3rd letter from the right
end of w is "a" $\}$

FIGURE 1.31

$L=\left\{w\right.$ in $\{a, b\}^{*} \mid$ 3rd letter from the right
end of w is "a" $\}$

Exercise: apply the construction to the NFA below. Note:You will not get the DFA above (but it will be equivalent).

FIGURE 1.31

The text's assertion that the construction given in the proof of Theorem 1.39 (1st ed: 1.19) is "obviously correct" is a little breezy. Here is an outline of a somewhat more formal correctness proof. I will only handle the case where the NFA has no ϵ-transitions. Notation is as in the book.

For any $x \in \Sigma^{*}$, define

$$
\begin{aligned}
Q_{N, x} & =\{r \in Q \mid N \text { could be in state } r \text { after reading } x\} \text {, and } \\
Q_{M, x} & =\text { the state } R \in Q^{\prime} \text { that } M \text { would be in after reading } x .
\end{aligned}
$$

The key idea in the proof is that these two sets are identical, i.e., that the single state of the DFA faithfully reflects the complete range of possible states of the NFA. The proof is by induction on $|x|$.

BASIS: ($|x|=0$.) Obviously $x=\epsilon$. Then

$$
Q_{N, \epsilon}=\left\{q_{0}\right\}=q_{0}^{\prime}=Q_{M, \epsilon} .
$$

The first and third equalities follow from the definitions of "moves" for NFAs and DFAs, respectively, and the middle equality follows from the construction of M.

Induction: $\left(|x|=n>0\right.$.) Suppose $Q_{N, y}=Q_{M, y}$ for all strings $y \in \Sigma^{*}$ with $|y|<n$, and let $x \in \Sigma^{*}$ be an arbitrary string with $|x|=n>0$. Since x is not empty, there must be some $y \in \Sigma^{*}$ and some $a \in \Sigma$ such that $x=y a$. For any $r \in Q$,

$$
\begin{align*}
& N \text { could be in state } r \text { after reading } x=y a \tag{1}\\
& \Leftrightarrow \text { there is some } r^{\prime} \in Q \text { such that } N \text { could be in } r^{\prime} \text { after reading } y \text { and } r \in \delta\left(r^{\prime}, a\right) \tag{2}\\
& \Leftrightarrow r \in\left|\mid \delta\left(r^{\prime}, a\right)\right. \tag{3}
\end{align*}
$$

reflects the complete range of possible states of the NFA. The proof is by induction on $|x|$.
BASIS: $(|x|=0$.) Obviously $x=\epsilon$. Then

$$
Q_{N, \epsilon}=\left\{q_{0}\right\}=q_{0}^{\prime}=Q_{M, \epsilon} .
$$

The first and third equalities follow from the definitions of "moves" for NFAs and DFAs, respectively, and the middle equality follows from the construction of M.

Induction: $\left(|x|=n>0\right.$.) Suppose $Q_{N, y}=Q_{M, y}$ for all strings $y \in \Sigma^{*}$ with $|y|<n$, and let $x \in \Sigma^{*}$ be an arbitrary string with $|x|=n>0$. Since x is not empty, there must be some $y \in \Sigma^{*}$ and some $a \in \Sigma$ such that $x=y a$. For any $r \in Q$,

$$
\begin{align*}
& N \text { could be in state } r \text { after reading } x=y a \tag{1}\\
& \Leftrightarrow \quad \text { there is some } r^{\prime} \in Q \text { such that } N \text { could be in } r^{\prime} \text { after reading } y \text { and } r \in \delta\left(r^{\prime}, a\right) \tag{2}\\
& \Leftrightarrow \quad r \in \bigcup_{r^{\prime} \in Q_{N, y}} \delta\left(r^{\prime}, a\right) \tag{3}\\
& \Leftrightarrow r \in \delta^{\prime}\left(Q_{N, y}, a\right) \tag{4}\\
& \Leftrightarrow r \in \delta^{\prime}\left(Q_{M, y}, a\right) \tag{5}\\
& \Leftrightarrow r \in Q_{M, x} \tag{6}
\end{align*}
$$

The equivalence of (1) and (2) follows from the definition of "moves" for NFAs: the last step must be a move from some state reached after reading y. The equivalence of (2) and (3) is just set theory. The equivalence of (3) and (4) follows from the definition of δ^{\prime}. The equivalence of (4) and (5) follows from the induction hypothesis. The equivalence of (5) and (6) follows from the definition of "moves" for DFAs.

Given the equivalence established above, it's easy to see that $L(N)=L(M)$, since N accepts x if and only if it can reach a final state after reading x, which will be true if and only if $Q_{N, x}$ contains a final state, which happens if and only if $Q_{M, x} \in F^{\prime}$.

Den

$$
M_{1} \& M_{2} \text { equivalent if } L\left(M_{1}\right)=6\left(M_{2}\right)
$$

Theorem 1.39
\forall nfa N Iequivalut dfa M
$g \operatorname{man} N=\left(Q, \Sigma, \delta, q_{0}, F\right)$
buile $M=\left(Q^{\circ}, \Sigma, \delta^{\circ}, 8^{\circ}, F^{\circ}\right)$
No ع-
(Warm up: no e-moves)

$$
\begin{aligned}
& Q^{\prime}=2^{Q} \\
& q^{\prime}=\{q 0\} \\
& F^{\prime}=\{R \subseteq Q \mid R \cap F \neq \varnothing\} \\
& \forall a \in \Sigma, \forall R \subseteq Q: \\
& S^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)
\end{aligned}
$$

Def n

$$
M_{1} \& M_{2} \text { equivalent if } L\left(M_{1}\right)=L\left(M_{2}\right)
$$

Theorem 1.39
\forall mfa N gequivalut dea M

$$
\begin{aligned}
& \text { given } N=\left(Q, \Sigma, \delta, q_{0}, F\right) \\
& \text { build } M=\left(Q^{\prime}, \Sigma, \delta^{\circ}, q_{0}^{\circ}, F^{\circ}\right)
\end{aligned}
$$

(Warm up: ne e-moves) + full version: With E. mows

$$
\begin{aligned}
& Q^{\prime}=2^{Q} \\
& q^{\prime}=E(\{q 0\}) \\
& F^{\prime}=\{R \subseteq Q \mid R \cap F \neq \phi\} \\
& \forall a \in \Sigma, \forall R \subseteq Q: \\
& S^{\prime}(R, a)=\bigcup_{r \in R} E(\delta(r, a)) \\
& \forall R \subseteq Q \\
& E(R)=\{q \mid q \text { reaclobl by } \\
& \text { Oor mope \&omoven from same } \in R\}
\end{aligned}
$$

No ε moves

Yes, ε moves.

NB: do ε moves before start, after other moves, not both before \& after each move.

Figure 1.27

