
CSE 322, Fall 2010
Nondeterministic

Finite State Machines

1

Defn: For any X, Y ⊆ Σ*, define
 X • Y = { xy | x ∈ X & y ∈ Y }
Ex:

 X = { a, ab }

 Y = { ε, b, bb }

 X • Y = { a, ab, abb, abbb }

 Y • X = { a, ab, ba, bab, bba, bbab }

 note |X • Y| ≤ |X| • |Y|

Concatenation

2

3

4

5

6

7

?

8

?

9

Q:

• Is the class of regular languages closed
under concatenation?

• Again, for Java programs, say, it’s not too
hard to prove this.

• What about finite automata? Inability to
back up the input tape is one issue...

10

An idea for closure under concatenation, but not
clear how to do it – may need to stay in M1 for
several visits to F before jumping to M2.
E.g.:
 {even parity} • {exactly 5 1’s}
which 1 is 5th from end?

11

101, 11 .
0101, 011 .

00101, 0011 .
111101, 11111 .

 1010, 0110
 10100, 01101

12

13

14

15

L = { w in {a,b}* | 3rd letter from the right
end of w is "a" }

a

aba

aa

aaa aab

ab

abb

ε

b

ba

baa bab

bb

bba bbb

a

a

a a a a

a

b b b b

b b

b

a a

b

b
a

a

a

a

a

b
b

b

b

b
b

a

16

L = { w in {a,b}* | 3rd letter from the right
end of w is "a" }

a

aba

aa

aaa aab

ab

abb

ε

b

ba

baa bab

bb

bba bbb

a

a

a a a a

a

b b b b

b b

b

a a

b

b
a

a

a

a

a

b
b

b

b

b
b

a

a, b

a, b a, ba

17

18

to show M on w:
Accepts–show one
 path ending in F
Rejects–show all
 paths fail to end in F

19

Example “guess & check”:
L = { an | n is a multiple of 2, 3, 5 or 7 }

ε

ε
ε
ε

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Guess Check

Note: equiv DFA has 2*3*5*7
states and messy set of final states

20

L = { w in {a,b}* | 3rd letter from the right
end of w is "a" }

a

aba

aa

aaa aab

ab

abb

ε

b

ba

baa bab

bb

bba bbb

a

a

a a a a

a

b b b b

b b

b

a a

b

b
a

a

a

a

a

b
b

b

b

b
b

a

a, b

a, b a, ba

Guess Check
21

(Non-)Example
L = { ap | p is prime }

a

εM:

Q: is M deterministic?
Q: Does M accept ap for every prime p?
Q: does L(M) = L?
Q: but, doesn’t it always guess right?

22

Nondeterminism: How

• View it as a generator of a language

• View it as a recognizer of a language

- “build the tree”

- explore all paths

- guess-and-check

23

Nondeterminism: Why
• Specifications: say, clearly & concisely, what, not how

• Precise, and often concise specification

- “do A or B, but I don’t yet know/don’t want clutter of saying
which”

- Sometimes exponentially more concise - “3rd letter from end”

• Natural model of incompletely specified/partially known systems

- if correct wrt a partial spec, then correct wrt any
implementation consistent with that spec

- “is state ‘reactor boiling / control rods out’ unreachable, even
allowing for unknown behavior of subsystem X”?

24

Kleene Star

• Defn: L* = ∪n≥0 Ln

• Examples

i) Σ* : a simple special case

ii) L = { apb | p is prime}
L* = {ε} ∪ {ap

1 b ap2 b ... b apk b | k≥1,
and each pi is prime}

25

Closure under union

26

27

28

No
(may reject ε)

29

or

30

No, may accept extra stuff (if M can
loop back to start before reaching F)

or

31

32

33

General strategy: such proofs are usually constructive, i.e., given a
(generic) NFA N1, we construct a “new” NFA, N. In this case:

[Notation changed slightly
to match Thm 1.49 in
Sipser; see it for careful
description of N vs N1]

Then prove the correctness of the construction, i.e., that L(N) =
(L(N1))*. Proof idea: connect computation trace(s) of “old” NFA to
ones in “new” NFA, where a “trace” means, recalling the definition
of “M could be in state q after reading w,” the/a sequence of states/
transitions/edges M follows/could follow on some input.

N1, “Old”: blue
N, “New”: blue + greenN1

N

q0 q1

Closure under *

34

Closure under *,
II
For the correctness proof, there are usually 2 directions, namely:
(L(N1))* ⊆ L(N) and L(N) ⊆ (L(N1))*

1) (L(N1))* ⊆ L(N), or, equivalently, given any k ≥ 0 and any k strings x1,
x2, ..., xk, each in L(N1), show that their concatenation x1•x2• ... •xk = x is in
L(N). For this direction, let ri0, ri1, ri2, ..., rini be an accepting trace (in N1)
for xi, 1 ≤ i ≤ k. Note q1 = ri0, (why?) and rini ∈ F (why?) The key idea is
that you can glue these together using the new start state and the new ε
transitions (green state/arrows) to build an accepting trace in N for x.
Namely: q0, r10, r11, r12, ..., r1n1, r20, r21, r22, ..., r2n2, ..., rk0, ..., rknk ∈ F. This is a
valid accepting trace in N since all transitions in that sequence are either
transitions of N1, hence in N, or are ε transitions from a final state of N1 to
N1’s start state q1 = r10 = r20 = ..., hence again in N. ∴ x ∈ L(N).

N1

N

q0 q1

Trace really
should be
ri0, ai0,
ri1, ai1, ... i.e.
alternately
∈Q, ∈Σ∪{ε},
but slides are
small & I’m
being lazy.

35

Closure under *,
III
2) L(N) ⊆ (L(N1))*, or equivalently, given any x in L(N), show that it can be
broken into k ≥ 0 substrings x1, x2, ..., xk, (i.e., x = x1•x2• ... •xk) so that
each is in L(N1). For this direction, suppose q0 = r0, r1, r2, ..., rn ∈ F is an
accepting trace (in N) for x. Note that r1 = q1, since the only transition
leaving q0 goes to q1 (and is labeled ε). Let x1 be the concatenation of all
edge labels up to (but excluding) the next green edge (i.e., an ε-move
from a final state back to q1). Note that x1 ∈ L(N1), since the included
transitions are all present in N1 and run from its start state to a final
state, so they are an accepting trace in N1. Similarly, let x2 be the
concatenation of all edge labels up to the next green edge, ..., and xk those
after the last green edge. By the same reasoning, each xi ∈ L(N1), for each
1 ≤ i ≤ k. Finally, note that x = x1•x2• ... •xk since the excluded transitions
are all ε-moves. ∴ x ∈ (L(N1))* QED

N1

N

q0 q1

36

Closure under *,
Leftovers

There are a few points in the proof above that I deliberately
didn’t address. I strongly suggest that you think about them and
see if you can fill in missing details and/or explain why they
actually are covered, even if not explicitly mentioned. I suggest
you write it (but no need to turn it in).

• Are x = ε / k = 0 correctly handled, or do you need to say
more?

• Is it a problem if N1’s start state is a final state?

• Is it a problem if N1 includes ε-moves from (some or all states
in) F to q1?

• Is there anything else I omitted?

37

Closure under
Concatenation

Final states of M1
no longer final

38

NFA == DFA,
or not?

39

40

41

L = { w in {a,b}* | 3rd letter from the right
end of w is "a" }

a

aba

aa

aaa aab

ab

abb

ε

b

ba

baa bab

bb

bba bbb

a

a

a a a a

a

b b b b

b b

b

a a

b

b
a

a

a

a

a

b
b

b

b

b
b

a

a, b

a, b a, ba

42

{1,3}

A 3-state
NFA

The equivalent
23 = 8-state DFA,
built as in
Theorem 1.39
(4 states on left are not
reachable from start state
but are part of the DFA.)

An example transition:
δ’({1,2,3}, b) = δ(1,b) ∪ δ(2,b) ∪ δ(3,b) = {1} ∪ {3} ∪ ∅ = {1,3}

43

L = { w in {a,b}* | 3rd letter from the right
end of w is "a" }

a

aba

aa

aaa aab

ab

abb

ε

b

ba

baa bab

bb

bba bbb

a

a

a a a a

a

b b b b

b b

b

a a

b

b
a

a

a

a

a

b
b

b

b

b
b

a

a, b

a, b a, ba

Exercise: apply
the construction
to the NFA
below.
Note: You will
not get the DFA
above (but it will
be equivalent).

44

1

CSE 322
Intro to Formal Models in CS

Simulation of NFAs by DFAs: Notes on the Proof of Theorem 1.39

W. L. Ruzzo 15 Oct 10

The text’s assertion that the construction given in the proof of Theorem 1.39 (1st ed: 1.19) is “obviously
correct” is a little breezy. Here is an outline of a somewhat more formal correctness proof. I will only handle
the case where the NFA has no �-transitions. Notation is as in the book.

For any x ∈ Σ∗, define

QN,x = {r ∈ Q | N could be in state r after reading x}, and
QM,x = the state R ∈ Q� that M would be in after reading x.

The key idea in the proof is that these two sets are identical, i.e., that the single state of the DFA faithfully
reflects the complete range of possible states of the NFA. The proof is by induction on |x|.

BASIS: (|x| = 0.) Obviously x = �. Then

QN,� = {q0} = q�0 = QM,�.

The first and third equalities follow from the definitions of “moves” for NFAs and DFAs, respectively, and
the middle equality follows from the construction of M .

INDUCTION: (|x| = n > 0.) Suppose QN,y = QM,y for all strings y ∈ Σ∗ with |y| < n, and let x ∈ Σ∗

be an arbitrary string with |x| = n > 0. Since x is not empty, there must be some y ∈ Σ∗ and some a ∈ Σ
such that x = ya. For any r ∈ Q,

N could be in state r after reading x = ya (1)
⇔ there is some r� ∈ Q such that N could be in r� after reading y and r ∈ δ(r�, a) (2)
⇔ r ∈

�

r�∈QN,y

δ(r�, a) (3)

⇔ r ∈ δ�(QN,y, a) (4)
⇔ r ∈ δ�(QM,y, a) (5)
⇔ r ∈ QM,x (6)

The equivalence of (1) and (2) follows from the definition of “moves” for NFAs: the last step must be a move
from some state reached after reading y. The equivalence of (2) and (3) is just set theory. The equivalence
of (3) and (4) follows from the definition of δ�. The equivalence of (4) and (5) follows from the induction
hypothesis. The equivalence of (5) and (6) follows from the definition of “moves” for DFAs.

Given the equivalence established above, it’s easy to see that L(N) = L(M), since N accepts x if and
only if it can reach a final state after reading x, which will be true if and only if QN,x contains a final state,
which happens if and only if QM,x ∈ F �.

45

1

CSE 322
Intro to Formal Models in CS

Simulation of NFAs by DFAs: Notes on the Proof of Theorem 1.39

W. L. Ruzzo 15 Oct 10

The text’s assertion that the construction given in the proof of Theorem 1.39 (1st ed: 1.19) is “obviously
correct” is a little breezy. Here is an outline of a somewhat more formal correctness proof. I will only handle
the case where the NFA has no �-transitions. Notation is as in the book.

For any x ∈ Σ∗, define

QN,x = {r ∈ Q | N could be in state r after reading x}, and
QM,x = the state R ∈ Q� that M would be in after reading x.

The key idea in the proof is that these two sets are identical, i.e., that the single state of the DFA faithfully
reflects the complete range of possible states of the NFA. The proof is by induction on |x|.

BASIS: (|x| = 0.) Obviously x = �. Then

QN,� = {q0} = q�0 = QM,�.

The first and third equalities follow from the definitions of “moves” for NFAs and DFAs, respectively, and
the middle equality follows from the construction of M .

INDUCTION: (|x| = n > 0.) Suppose QN,y = QM,y for all strings y ∈ Σ∗ with |y| < n, and let x ∈ Σ∗

be an arbitrary string with |x| = n > 0. Since x is not empty, there must be some y ∈ Σ∗ and some a ∈ Σ
such that x = ya. For any r ∈ Q,

N could be in state r after reading x = ya (1)
⇔ there is some r� ∈ Q such that N could be in r� after reading y and r ∈ δ(r�, a) (2)
⇔ r ∈

�

r�∈QN,y

δ(r�, a) (3)

⇔ r ∈ δ�(QN,y, a) (4)
⇔ r ∈ δ�(QM,y, a) (5)
⇔ r ∈ QM,x (6)

The equivalence of (1) and (2) follows from the definition of “moves” for NFAs: the last step must be a move
from some state reached after reading y. The equivalence of (2) and (3) is just set theory. The equivalence
of (3) and (4) follows from the definition of δ�. The equivalence of (4) and (5) follows from the induction
hypothesis. The equivalence of (5) and (6) follows from the definition of “moves” for DFAs.

Given the equivalence established above, it’s easy to see that L(N) = L(M), since N accepts x if and
only if it can reach a final state after reading x, which will be true if and only if QN,x contains a final state,
which happens if and only if QM,x ∈ F �.

46

No ε-
moves

47

No ε-
moves

Yes, ε-
moves.

NB: do ε-
moves before
start, after
other moves,
not both
before & after
each move.

48

{q1,q2,
q3}

{q1,q2,
q3, q4}

{q1,q3,
q4}

{q1, q3}

{q1,q4}

∅

{q4}

{q1,q2,
q4}

{q2, q3,
q4}

{q3, q4}{q2, q4}

{q2, q3}{q2}

{q3}

{q1}

{q1, q2}

0

1

10
0

1
0

1

0
1

0

1
0 1 01

1 0

Notes on Subset
Construction:
1) only the top 6
states are reachable
from the start state,
but all 16 are
required by the
construction.
2) ε moves come
after Σ moves. E.g.,
 δ'({q2},1) = ∅,
not {q4}.

0

1

0,1

0

1

0, 1

0

1

0,1

0

1

49

