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Finite State Machines





An Example: Even Parity



• The "obvious" algorithm: first count the 1's, then decide whether the count is even:

• It works, but is not a finite state machine.  This is:

An Example: Even Parity



Formal definition



Formal version of parity, I



Formal version of parity, II

for all q in Q and all a in Σ

0 1



Σ = { a, b }

L = { w | 2nd letter of w is “a” }
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Σ = { a, b }

L = { w | 3rd letter of w is “a” }
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epsilon N
a N
b N

aa, ab, ba, bb N
aaa Y
aab Y
baa N
bbb N
... ...



L = { w in {a,b}* | 3rd letter from the right 
end of w is "a" }
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a “shift register”



Exercise: what 
state is M in after 
reading ε?



And M rejects w iff q ∉ F

Strings are accepted/rejected
Languages are recognized (or not)









An example
Defn for any a in Σ, w in Σ* 
#a(w) is the number of instances 
of the symbol a in the string w

E.g.  #1(1011) = 3

M = ({0,1,2,3}, {0,1}, δ, 0, {1,3}) where 

  δ(i,0) = i
  δ(i,1) = (i+1) mod 4

What does M do?
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Claim: ∀w∈Σ*, the state M is in after reading w 
(“δ(0,w)”) is  (#1(w)) mod 4

[Isn’t this just the defn of δ?  No; w∈Σ*, not Σ]

Proof:  By induction on |w|

Basis (|w| = 0): then w=ε, and #1(ε)=0, and by definition of  “state M is 
in...”, M is in its start state, namely state 0.

Ind hyp:  For some n > 0, assume the statement in the claim is true for 
all strings w of length < n.

Ind:   Let w be a string of length n.  Since every non-ε string has a last 
letter, w=xa for some a in Σ, and some string x of length <n.  Let i=(#1

(x)) mod 4.  I.H. applies to x, so we may assume M is in state i after 
reading x.  By def of δ and “state reached after reading a string,” after 
reading w=xa, M is in state δ(i,a).  Two cases, depending on a (and δ):

  case 1: a=0.  Then δ(i,a)=i, and #1(xa) = #1(x) ≡ i mod 4
  case 2: a=1.  Then δ(i,a)=(i+1)mod 4, and 
                    #1(xa) = #1(x)+1 ≡ i+1 (mod 4)

Which establishes the claim.



• Corollary: the language recognized by M is  {w in 
{0,1}* | #1(w) mod 4 = 1 or 3 }.  Equivalently, #1(w) 
is odd.

Proof: by claim, exactly these strings cause M to 
end in state 1 or 3, which are its only final states

• Note: it’s important that the claim above ignored 
final states.  E.g., if we changed the set of final 
states to, say, {1,2} then the claim is still valid (tho 
the corollaries above would need to be adjusted 
accordingly).



int i = 0;

while(! end_of_file){

  char a = get_char_from_file;

  if( a == ‘1’) { i = i+1;}

}

print i;

Compare above to:



int i = 0;

while(! end_of_file){

  char a = get_char_from_file;

  if( a == ‘1’) { i = i+1;}

}

print i;

Compare above to:

claim: i == #1 in file

claim:  i == 0

claim: 
   i == #1 read so far



The message

• A program is a finite, static thing

• But to understand it, you need to reason 
about its dynamic behavior in infinitely many 
situations

• Like it or not, you do induction on loops 
(and recursions) all the time



(w, x, y in Σ*) 



Another Induction 
Example





(but not Leq)







Case 2, c = b: similar

QED

 

(end of induction example;  Suggest you 
work through it yourself, to see that you can 
fill in the missing steps and write 
justifications for other steps.)





Closure Properties









Unary ops, 
too; e.g.:
N is closed 
under squaring
but not sqrt





• Need to define carefully “language recognized by a Java 
program,” etc., but the results suggested above are fairly 
intuitive

• Run prog 1 on input, then run prog 2 on same input; accept if 
either (∪)/both (∩) do.

• A really important difficulty: what if P1 doesn’t halt?

• Fix for this problem: run both in parallel: 1st step of P2 then 1st 
step of P2 then next step of P1, then...

• Bottom Line: “yes, the set of languages recognized by Java 
programs is closed under union and intersection.”



Example for FAs

• Σ = {0, 1, a, b}

• L1 = { w ∈ {0,1}* | w has even parity }

• L2 = { w ∈ {a,b}* | w has exactly 5 a’s }

• L1 ∪ L2

• L3 = { w ∈ {0,1}* | w has exactly 5 1’s }

• L1 ∪ L3 ?

Easy-ish: 1st letter tells which case

Not so easy:  both cases use just 0/1



Closure under Union




