
CSE 322, Fall 2010
(Deterministic)

Finite State Machines

An Example: Even Parity

• The "obvious" algorithm: first count the 1's, then decide whether the count is even:

• It works, but is not a finite state machine. This is:

An Example: Even Parity

Formal definition

Formal version of parity, I

Formal version of parity, II

for all q in Q and all a in Σ

0 1

Σ = { a, b }

L = { w | 2nd letter of w is “a” }

Example

a,b

a,b

a,ba

b

Σ = { a, b }

L = { w | 3rd letter of w is “a” }

Example

a,b

a,b

a,ba

b

a,b

epsilon N
a N
b N

aa, ab, ba, bb N
aaa Y
aab Y
baa N
bbb N
... ...

L = { w in {a,b}* | 3rd letter from the right
end of w is "a" }

a

aba

aa

aaa aab

ab

abb

ε

b

ba

baa bab

bb

bba bbb

a

a

a a a a

a

b b b b

b b

b

a a

b

b
a

a

a

a

a

b
b

b

b

b
b

a

a “shift register”

Exercise: what
state is M in after
reading ε?

And M rejects w iff q ∉ F

Strings are accepted/rejected
Languages are recognized (or not)

An example
Defn for any a in Σ, w in Σ*
#a(w) is the number of instances
of the symbol a in the string w

E.g. #1(1011) = 3

M = ({0,1,2,3}, {0,1}, δ, 0, {1,3}) where

 δ(i,0) = i
 δ(i,1) = (i+1) mod 4

What does M do?

0

0

0
1

1
11

0

0

1

23

Claim: ∀w∈Σ*, the state M is in after reading w
(“δ(0,w)”) is (#1(w)) mod 4

[Isn’t this just the defn of δ? No; w∈Σ*, not Σ]

Proof: By induction on |w|

Basis (|w| = 0): then w=ε, and #1(ε)=0, and by definition of “state M is
in...”, M is in its start state, namely state 0.

Ind hyp: For some n > 0, assume the statement in the claim is true for
all strings w of length < n.

Ind: Let w be a string of length n. Since every non-ε string has a last
letter, w=xa for some a in Σ, and some string x of length <n. Let i=(#1

(x)) mod 4. I.H. applies to x, so we may assume M is in state i after
reading x. By def of δ and “state reached after reading a string,” after
reading w=xa, M is in state δ(i,a). Two cases, depending on a (and δ):

 case 1: a=0. Then δ(i,a)=i, and #1(xa) = #1(x) ≡ i mod 4
 case 2: a=1. Then δ(i,a)=(i+1)mod 4, and
 #1(xa) = #1(x)+1 ≡ i+1 (mod 4)

Which establishes the claim.

• Corollary: the language recognized by M is {w in
{0,1}* | #1(w) mod 4 = 1 or 3 }. Equivalently, #1(w)
is odd.

Proof: by claim, exactly these strings cause M to
end in state 1 or 3, which are its only final states

• Note: it’s important that the claim above ignored
final states. E.g., if we changed the set of final
states to, say, {1,2} then the claim is still valid (tho
the corollaries above would need to be adjusted
accordingly).

int i = 0;

while(! end_of_file){

 char a = get_char_from_file;

 if(a == ‘1’) { i = i+1;}

}

print i;

Compare above to:

int i = 0;

while(! end_of_file){

 char a = get_char_from_file;

 if(a == ‘1’) { i = i+1;}

}

print i;

Compare above to:

claim: i == #1 in file

claim: i == 0

claim:
 i == #1 read so far

The message

• A program is a finite, static thing

• But to understand it, you need to reason
about its dynamic behavior in infinitely many
situations

• Like it or not, you do induction on loops
(and recursions) all the time

(w, x, y in Σ*)

Another Induction
Example

(but not Leq)

Case 2, c = b: similar

QED

(end of induction example; Suggest you
work through it yourself, to see that you can
fill in the missing steps and write
justifications for other steps.)

Closure Properties

Unary ops,
too; e.g.:
N is closed
under squaring
but not sqrt

• Need to define carefully “language recognized by a Java
program,” etc., but the results suggested above are fairly
intuitive

• Run prog 1 on input, then run prog 2 on same input; accept if
either (∪)/both (∩) do.

• A really important difficulty: what if P1 doesn’t halt?

• Fix for this problem: run both in parallel: 1st step of P2 then 1st
step of P2 then next step of P1, then...

• Bottom Line: “yes, the set of languages recognized by Java
programs is closed under union and intersection.”

Example for FAs

• Σ = {0, 1, a, b}

• L1 = { w ∈ {0,1}* | w has even parity }

• L2 = { w ∈ {a,b}* | w has exactly 5 a’s }

• L1 ∪ L2

• L3 = { w ∈ {0,1}* | w has exactly 5 1’s }

• L1 ∪ L3 ?

Easy-ish: 1st letter tells which case

Not so easy: both cases use just 0/1

Closure under Union

