CSE 322, Fall 2010

(Deterministic) Finite State Machines Finite State Automaton (FSA) 5 pieces - States - Alphabet - Transitions - Stat - Find or Accept

An Example: Even Parity

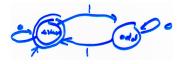
$$\Sigma = \{0, 1\}$$

$$L = \{W \in \Xi^* \mid \# of loin \\ W is even \}$$

An Example: Even Parity

• The "obvious" algorithm: first count the 1's, then decide whether the count is even:

• It works, but is not a finite state machine. This is:



Formal definition

A finite state muchine M= (Q, Z, S, go, F) Qis set (states) 8. EQ start chata Z is a first set (alphabet) FSQ Final states Accepting states S: Q x Z = Q + vansition function

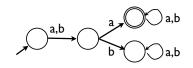
Formal version of parity, I Mparity = (9, 2, 5, g., F) where Q = { even, odd } e 2 = {0,13 80 = even (one eliment) Fr Eeven 7 La set containing one element ? S(q, a): 1 0 1 even even edd add add aven

Formal version of parity, II e_{p} e_{p} e_{p}

for all q in Q and all a in Σ

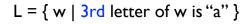
Example

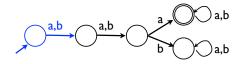
 $\Sigma = \{a, b\}$ L = { w | 2nd letter of w is "a" }

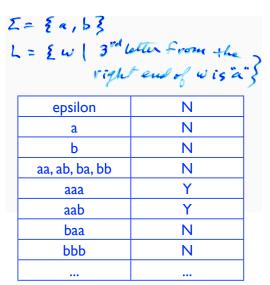


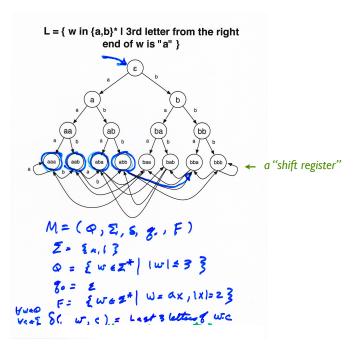
Example

 $\Sigma = \{a, b\}$

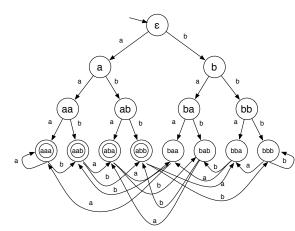








L = { w in {a,b}* I 3rd letter from the right end of w is "a" }



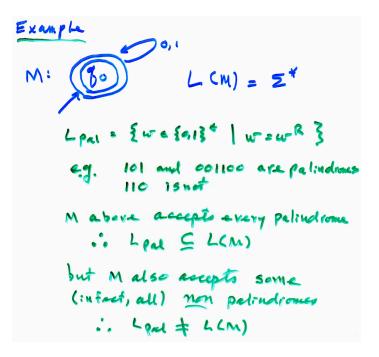
$$PE_{i}^{ev} (misin state g ")$$

$$M ends in state g after
$$Veadory w = e \equiv * ;f$$
(i) $w = w, w_2 \cdots w_n$
where $w_i \in E$
(2) $\exists state v_0, v_1, v_2 \cdots v_n \in Q$

$$st(u) \quad v_0 = g_0$$
(b) $\forall 1 \leq i \leq n$

$$S(v_{i-1}, w_i) = V_i$$
Exercise: what
state is M in after
reading ε ?
$$Exercise: what
state is M in after
reading ε ?$$$$

DefnM accepts
$$w \in \Sigma^* \iff th$$
State, q, reached by M after
reading w is an accepting state,
i.e., q $\in F$.And M rejects w iff $q \notin F$ DafnThe language recognized by M,
 $L(M) = \{w \in \Sigma^* \mid Macaets w \}.$ Strings are accepted/rejected
Languages are recognized (or not)Every M recognizes exactly
0 he language. I mplicitly,
it "recognizes" both strings
it must accept and those it
must reject.



Claim: $\forall w {\in} \Sigma^*,$ the state M is in after reading w (" $\delta(0,w)$ ") is $\ (\#_1(w)) \mbox{ mod } 4$

[Isn't this just the defn of δ ? No; $w \in \Sigma^*$, not Σ]

Proof: By induction on |w|

Basis (|w| = 0): then $w=\epsilon$, and $\#_1(\epsilon)=0$, and by definition of "state M is in...", M is in its start state, namely state 0.

Ind hyp: For some n > 0, assume the statement in the claim is true for all strings w of length < n.

Ind: Let w be a string of length n. Since every non- ϵ string has a last letter, w=xa for some a in Σ , and some string x of length <n. Let i=(#₁ (x)) mod 4. I.H. applies to x, so we may assume M is in state i after reading x. By def of δ and "state reached after reading a string," after reading w=xa, M is in state δ (i,a). Two cases, depending on a (and δ):

case 1: a=0. Then $\delta(i,a)=i$, and $\#_1(xa) = \#_1(x) = i \mod 4$ case 2: a=1. Then $\delta(i,a)=(i+1)\mod 4$, and $\#_1(xa) = \#_1(x)+1 = i+1 \pmod{4}$

Which establishes the claim.

An example

Defin for any a in Σ , w in Σ^* #_a(w) is the number of instances of the symbol a in the string w

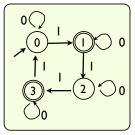
E.g. $\#_1(1011) = 3$ M = ({0,1,2,3}, {0,1}, δ , 0, {1,3}) where $\delta(i,0) = i$ $\delta(i,1) = (i+1) \mod 4$

What does M do?

Corollary: the language recognized by M is {w in {0,1}* | #1(w) mod 4 = 1 or 3 }. Equivalently, #1(w) is odd.

Proof: by claim, exactly these strings cause M to end in state I or 3, which are its only final states

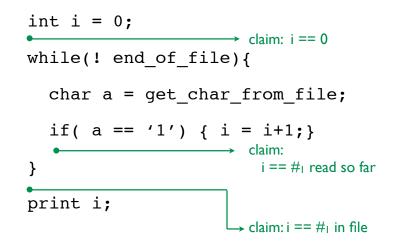
• Note: it's important that the claim above ignored final states. E.g., if we changed the set of final states to, say, {1,2} then the claim is still valid (tho the corollaries above would need to be adjusted accordingly).



Compare above to:

```
int i = 0;
while(! end_of_file){
    char a = get_char_from_file;
    if( a == '1') { i = i+1;}
}
print i;
```

Compare above to:



The message

- A program is a finite, static thing
- But to understand it, you need to reason about its dynamic behavior in *infinitely* many situations
- Like it or not, you do induction on loops (and recursions) all the time

Prefix X is a <u>profix</u> of W IF ∃ y at. W= x y (w, x, y in Σ*) Eq. Profixes of abb an E, a, ab, abb Facts E is always a prafix every W is a prafix of itself if Iwl=n then when not profixes

Another Induction Example

Clarm Y we z* the state reached
by M after reading wis
$$q = q(w)$$

Corv. Maccats L (but not Leq)

of Maccats Wendorn F) by
 (z) Mendorn O transfe
 (z) Mendorn O transfe
 (z) Mendorn O transfe
 (z) Mendorn O transfe
 (z) $(z$

(b)
$$g(x) = 42$$

.... Similar
(c) $-42 \le g(x) \le 42$
Mingul after X Itt
 $S(g(x), a) = g(x) + 1$ coust
 $g(xa) = g(x) + 1$
 $\therefore p(n+1)$
 $g(x) \le 42$
 $\therefore f(xa) = f(x) + 1 \le 42$

"even parity" is regular "Brd from right"is regular "odd length" is regular "Z#" is regular Case 2, c = b: similar

QED

(end of induction example; Suggest you work through it yourself, to see that you can fill in the missing steps and write justifications for other steps.)

Closure Properties

Are there general ways to Prove languages are regular. other than making more 2 more example M's?

Theorem IF L is regular then so is Z^{*}-L <u>Proof</u> L regular, so L = L(M) for Some Fa M= (Q, S, S, go, F) L et M' = (Q, S, S, go, Q-F) For all w \in Z^{*}: Maccepto w (S) Mis that shate g & F after reading w (D M' rejecto w (Since g & F (D g & Q-F)) .: w & L(M) (D w & L(M')) i.e. L(M') = Z^{*}-L is regular.

Closure Properties

A set is "closed" under some operation if applying the op to set members always yeilds a set member

Examples

N is closed under + X (cg 1+2611) but not under - / (cg 1-2411) Z is closed under + - X (1-262) but not under / (1/262) The set of regular language is closed under complementation Unary ops, too; e.g.: N is closed under squaring but not sqrt

Suppose Program | recognizer 4 Program 4 Program 2 recognized L2 Is threa program recognized hi uhz ? LIALZ ?

- Need to define carefully "language recognized by a Java program," etc., but the results suggested above are fairly intuitive
- Run prog I on input, then run prog 2 on same input; accept if either (∪)/both (∩) do.
- A really important difficulty: what if PI doesn't halt?
- Fix for this problem: run both *in parallel*: Ist step of P2 then Ist step of P2 then next step of P1, then...
- Bottom Line: "yes, the set of languages recognized by Java programs *is* closed under union and intersection."

Example for FAs

- $\Sigma = \{0, 1, a, b\}$
- $L_I = \{ w \in \{0, I\}^* \mid w \text{ has even parity } \}$
- $L_2 = \{ w \in \{a,b\}^* \mid w \text{ has exactly 5 a's } \}$
- $\bullet \ \ L_1 \ \cup \ L_2 \quad {\longleftarrow} \quad Easy-ish: \ Ist \ letter \ tells \ which \ case$
- $L_3 = \{ w \in \{0, I\}^* \mid w \text{ has exactly 5 } I's \}$
- L₁ ∪ L₃ ? ← Not so easy: both cases use just 0/1

Closure under Union

$$M_{i} = (a_{1}, \overline{2}, S_{i}, g_{0i}, F_{i})$$

$$M = (a_{1} \times a_{2}, \overline{3}, S, (g_{0,1} \otimes a_{2}), F)$$

$$\forall q_{1} \in a_{1}, g_{2} \in a_{2}, a \in \overline{2}$$

$$S((q_{11}q_{1}), a_{1}) = (S(q_{11}a_{1}), S(q_{21}a_{2}))$$

$$F_{2} (F_{1} \times a_{2}) \cup (a_{1} \times F_{2})$$

$$F = \xi (a_{1}, b_{1}) | \text{ eithm } a \in \overline{F_{1}}$$

$$G = b \in \overline{F_{2}}$$

```
\frac{Claim:}{\forall g_1 \in Q_1}, \forall g_2 \in Q_2, \forall w \in \Sigma^{\neq}
      Misinstate (81,82) after reading
       w ⇔ Missing, after reading in
and N2 is M g2 ·····
Prof:
Homework (induction on Iwi)
```

Corollary

L(M) = L(M,) U L(M2)

Note:

claim looks a lot like defo of S . BUT & (-, a) for fronte and ar E clain "... w" for sufaite set west