5 priced

- Stares
- Alphabet
- Transitions
- Start
- Final or Accept

An Example: Even Parity

Formal definition
A finite stats machine

$$
M=\left(Q, \bar{z}, \delta, q_{0}, F\right)
$$

whin is fruiter (stats)
q. $\in Q$ startatots
Σ is a finteset (alphabet)
$F \leq Q \quad$ Findetates
Accepting etta
$S: Q \times \bar{\Sigma} \rightarrow Q$
transition
function

Formal version of parity, II

Even more sucernctly
if we let $Q=\{0,1\}$ abe
then $\delta(q, a)=(q+a) \bmod 2$
for all q in Q and all a in Σ

Formal version of parity, I
$M_{\text {Parity }}=\left(Q_{i} \Sigma_{0} \delta, f_{0}, F\right)$
where

$\Sigma=\{0,1\}$
$f_{0}=$ even conesielemats)
$F=$ \{even \} ~ c a ~ s e t ~ c o n t a i n i n g ~ one element?

Example

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& L=\{w \mid 2 n d \text { letter of } w \text { is "a" }\}
\end{aligned}
$$

Example

$\Sigma=\{a, b\}$
$L=\{w \mid 3$ rd letter of w is "a" $\}$

$L=\left\{w\right.$ in $\{a, b\}^{*} \mid$ 3rd letter from the right end of w is " a " \}

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& L=\left\{w \mid 3^{\text {rd }}\right. \text { whten from the } \\
& \text { right end of wis "a" }\}
\end{aligned}
$$

epsilon	N
a	N
b	N
aa, ab, ba, bb	N
aaa	Y
aab	Y
baa	N
bbb	N
\ldots	\ldots

DEN (oisin stat
M ends in state oft
reading $w<\Sigma^{*}$ if
(1) $\omega=\omega_{1} \omega_{2} \ldots \omega_{n}$
where $w_{i} \in \Sigma$
(2) \exists state $r_{0}, r_{1}, r_{2} \ldots r_{n} \in \mathbb{Q}$
st. (a) $r_{0}=\sigma_{0}$
(b) $\forall 1 \leq i \leq n$

$$
\delta\left(r_{i=1}, \omega_{i}\right)=r_{i}
$$

($) \quad r_{n}=8$
Exercise: what state is M in after
Fact: is unique
because is a funditox, baspecelly

Def
M accepts $W \in \Sigma^{*} \leftrightarrow$ the Stair, f, reached by M after reading w^{w} is on accepting state,

$$
\text { lie., } q \in F \text {. }
$$

And M rejects w ff $q \notin F$
Def
The language recognized by M,
$L(M)=\left\{w \in \Sigma^{*} \mid\right.$ Maccepts $\left.w\right\}$.
Strings are accepted/rejected
Note Languages are recognized (or not)
Every M recognizes exactly One language. Implicitly, it "recognizes" both strings it must accept and those it must reject.

Example

Example
$M:$

$$
L(M)=\Sigma^{*}
$$

```
Example
```



```
Lpal ={w\in{0,1}}|w=\mp@subsup{w}{}{R}
4%. }101\mathrm{ and o01100 are palindrencs
M abeve acsept every palindroms
    \thereforeLPal}\subseteqL(M
but M also aecopts some
(infmef, all) non palindiomes
    \thereforeLPal # L(M)
```

Claim: $\forall w \in \Sigma^{*}$, the state M is in after reading w (" $\delta(0, w)$ ") is (\#।(w)) mod 4
[Isn't this just the defn of δ ? No; w $\in \Sigma^{*}$, not Σ]
Proof: By induction on $|w|$

Basis $(|w|=0)$: then $w=\varepsilon$, and $\#_{I}(\varepsilon)=0$, and by definition of "state M is in...", M is in its start state, namely state 0 .
Ind hyp: For some $\mathrm{n}>0$, assume the statement in the claim is true for all strings w of length $<n$.
Ind: Let w be a string of length n. Since every non- ε string has a last letter, $\mathrm{w}=\mathrm{xa}$ for some a in Σ, and some string x of length $<\mathrm{n}$. Let $\mathrm{i}=(\#$ (x)) mod 4. I.H. applies to x, so we may assume M is in state i after reading x. By def of δ and "state reached after reading a string," after reading $w=x a, M$ is in state $\delta(i, a)$. Two cases, depending on a (and δ):
case $\mathrm{I}: \mathrm{a}=0$. Then $\delta(\mathrm{i}, \mathrm{a})=\mathrm{i}$, and $\#_{1}(\mathrm{xa})=\#_{1}(\mathrm{x}) \equiv \mathrm{i} \bmod 4$
case $2: a=1$. Then $\delta(i, a)=(i+1) \bmod 4$, and

$$
\#_{1}(x a)=\#_{1}(x)+1 \equiv i+1(\bmod 4)
$$

Which establishes the claim.

An example

Defn for any a in Σ, w in Σ^{*} $\#_{a}(w)$ is the number of instances
 of the symbol a in the string w

$$
\begin{aligned}
& \text { E.g. } \# I(I 0 I I)=3 \\
& M=(\{0, I, 2,3\},\{0, I\}, \delta, 0,\{1,3\}) \text { where } \\
& \delta(i, 0)=i \\
& \delta(i, I)=(i+I) \bmod 4
\end{aligned}
$$

What does M do?

- Corollary: the language recognized by M is $\{w$ in $\{0, I\}^{*} \mid \# I(w) \bmod 4=1$ or 3$\}$. Equivalently, \#I(w) is odd.

Proof: by claim, exactly these strings cause M to end in state I or 3, which are its only final states

- Note: it's important that the claim above ignored final states. E.g., if we changed the set of final states to, say, $\{1,2\}$ then the claim is still valid (tho the corollaries above would need to be adjusted accordingly).

Compare above to:

```
int i = 0;
while(! end_of_file){
    char a = get_char_from_file;
    if( a == '1') { i = i+1;}
}
print i;
```


The message

- A program is a finite, static thing
- But to understand it , you need to reason about its dynamic behavior in infinitely many situations
- Like it or not, you do induction on loops (and recursions) all the time

Compare above to:

```
int i = 0;
while(! end_of_file){
    char a = get_char_from_file;
    if( a == '1') { i = i+1;}
    \bullet\longrightarrow claim:
} i==#! read so far
print i;
claim: i == 0
claim: i == #। in file
```


every w is a prefix of itself

Another Induction Example

Clurm $\forall \omega \in \Sigma^{*}$ the ettor reachad by M eftor readiny w is

$$
q=g(w)
$$

Corr. M accegts L (but not $L_{\text {eq }}$)
if M rexpsow \Leftrightarrow Mends in F J ${ }^{\text {blf }}$ \Leftrightarrow Mandsm, by chaust. $\left.0=g\left(\omega^{\top}\right)\right)_{\text {by }}$ by
$\omega \in d$

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& f(w)=H_{a}(w)-\#_{b}(w) \\
& L_{e q}=\{w \mid f(w)=0\} \\
& L=\left\{\omega \left\lvert\, \begin{array}{r}
f(\omega)=0 \& \text { Vprefix } x \\
\text { ow }|f(x)| \leq 42
\end{array}\right.\right\} \\
& g(w)= \begin{cases}f(w) & \text { if } \begin{array}{ll}
|f(x)| \leq 42 f a \\
\text { oll } p \times 8 i x=0 \times f w
\end{array} \\
\text { ga } & \text { oin }\end{cases} \\
& \text { i9 0.w. }
\end{aligned}
$$

Claren $\forall \omega \in \Sigma^{*}$, state reached by M aftan reading w is $g(w)$

$$
P(n): \forall \omega \in \Sigma^{n} \text { statt isg } g(v)
$$

To peore $\forall n \geqslant 0 P(n)$
Banis $m=0 \quad w=E$
M veadres state 0 on 2 by construation

$$
g(E)=0 \text { by ruspestion } \frac{\text { say mover }}{}
$$

Ind $P(x) \Rightarrow P(x+1)$
ut w be of leapth $x+1$ $w=x c$ for $\sin c c+\Sigma, x<\Sigma^{n}$
cane 1, $c=a$
(a) $g(x)=99$

$$
\begin{aligned}
& s(a, a)=99 \quad \leftarrow_{\text {by }} \text { ghan } \\
& g(x, a)=99 \\
& \therefore p(x+1)
\end{aligned}
$$

$$
\begin{aligned}
& (b) g(x)=42 \\
& \ldots \text { simitar } \\
& \text { (c) }-42 \leq g(x)<42 \\
& \text { Ming (x) after } x \quad \text { It t } \\
& \delta(g(x), a)=g(x)+1 \\
& g(x a)=g(x)+1 \\
& \therefore p(x+1) \\
& g(x)<42 \\
& \therefore f(x)<42 \\
& f(x a)=f(x)+1 \leq 42
\end{aligned}
$$

Regular Languages
$L \subseteq \Sigma^{*}$ is regular if $L=L(M)$ for some F.A. M

Examples
"even parity" is regular "god from right" is regular "odd length" igreqular " Σ^{*+1} is regular

Case 2, c = b: similar
QED
(end of induction example; Suggest you work through it yourself, to see that you can fill in the missing steps and write justifications for other steps.)

Closure Properties

Theorem

Are there general ways to
prove languages are regulus.
other than making more
\& more example Mos?

Theorem
If L is regular then $s o$ is $\sum^{*}-L$
Proof
L regular, so $L=L(M)$ for
Some fa $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Let $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$
For all $\omega \in \Sigma^{*}$:
Maccepto w \Leftrightarrow
M is in a state $q \in F$ after reading w $\Leftrightarrow M^{\prime}$..
$\Leftrightarrow M^{\prime}$ reject o w (since $\left.q \in F \Leftrightarrow q \notin Q-F\right)$
$\therefore \quad W \in L(M) \Leftrightarrow W \&\left(m^{\prime}\right)$
iss. $L\left(M^{\prime}\right)=2^{*}-L$ is regular.

If L is regular then so is $\sum^{*}-L$

Suppose

Program 1 recapuizen L_{1} 4 Program 2 recognize L_{2}

Is there program $h_{1} \cup L_{2}$? $h_{1} \cap L_{2}$?

Example for PAs

- $\Sigma=\{0, I, a, b\}$
- $L_{I}=\left\{w \in\{0, I\}^{*} \mid w\right.$ has even parity $\}$
- $L_{2}=\left\{w \in\{a, b\}^{*} \mid w\right.$ has exactly 5 a's $\}$
- $L_{1} \cup L_{2} \longleftarrow$ Easy-ish: Inst letter tells which case
- $L_{3}=\left\{w \in\{0, I\}^{*} \mid w\right.$ has exactly 5 I's $\}$
- $L_{1} \cup L_{3}$? « Not so easy: both cases use just 0/I
- Need to define carefully "language recognized by a Java program," etc., but the results suggested above are fairly intuitive
- Run prog I on input, then run prog 2 on same input; accept if either ($(\mathrm{U}) /$ both (n) do.
- A really important difficulty: what if PI doesn't halt?
- Fix for this problem: run both in parallel: I st step of P2 then Ist step of P2 then next step of PI, then...
- Bottom Line:"yes, the set of languages recognized by Java programs is closed under union and intersection."

Closure under Union

$$
\begin{aligned}
& M_{i}=\left(Q_{i}, \Sigma, S_{i}, f 0_{i}, F_{i}\right) \\
& M=\left(Q_{1} \times Q_{2}, \Sigma_{,} \delta_{1}\left(q_{0}, 8_{02}\right), F\right) \\
& \forall q_{1} \in Q_{1}, q_{2} \in Q_{2} \quad a \in \overline{2} \\
& \delta\left(\left(q_{1}, q_{3}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{3}\left(q_{2}, a\right)\right) \\
& \underset{\vdots}{\infty} \rightarrow F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{f} \times F_{2}\right) \\
& F=\left\{(a, b) \left\lvert\, \begin{array}{cc}
\text { lithe } & a \in 5_{1} \\
\text { or } & b \in F_{2}
\end{array}\right.\right\}
\end{aligned}
$$

$\forall q_{1} \in Q_{1}, \forall q_{2} \in Q_{2}, \forall w \in \Sigma^{*}$
M isinstate $\left(q_{1}, q_{2}\right)$ after reoding
$\omega \Leftrightarrow M_{1}$ isin o_{1} after $v_{\text {eading }}$ is and M_{2} isin q_{2}

Prad:
Homework (induction on $|w|$)

Cordlary:

$$
L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)
$$

Note:
clarm looks a lot like deroof
BuT $\delta(-, a)$ for f.not at $a \in \sum$ clain "... w" fre infaiter set wost

