CSE 322
 Winter Quarter 2009 Assignment 8 Due Friday, February 27, 2009

All solutions should be neatly written or type set. All major steps in proofs must be justified. Please start each problem solution on a new page and put your name on every page.

1. (10 points) In this problem we explore the "top down" and "bottom up" construction for PDAs from context-free grammars. Consider the grammar $G=(V, \Sigma, R, E)$ where

$$
\begin{aligned}
V & =\{T, F, E\} \\
\Sigma & =\{+, *,(,), a\} \\
R & =\{E \rightarrow E+T \\
& =E \rightarrow T \\
& =T \rightarrow T * F \\
& =T \rightarrow F \\
& =F \rightarrow(E) \\
& =F \rightarrow a\}
\end{aligned}
$$

(a) Design a PDA M_{T} by the "top down" construction that accepts $L(G)$. You may use a state diagram. Give a leftmost derivation of $(a+a) * a+a$. Beside it give the sequence of configurations from M_{T} that corresponds to the leftmost derivation. A configuration shows which symbol of the input is being processed, what state the machine is in, and the contents of the stack.
(b) Design a (extended) PDA M_{B} by the "bottom up" construction that accepts $L(G)$. You may use a state diagram. Give a rightmost derivation of $(a+a) * a+a$ in reverse order, top-to-bottom. Beside it give the sequence of configurations from M_{B} that corresponds to the rightmost derivation.

The bottom up construction was given in class and is not found in the book. It works as follows. There is a state q_{ℓ} which has two roles. The first role is to manage reduce steps. In a reduce step, if $A \rightarrow \alpha$ is a production, then the extended PDA in state q_{ℓ} can remove α^{R} from the stack and replace it with A. The second role is to manage shift steps. In a shift step, the PDA in state q_{ℓ} can take an input symbol and push it on to the stack. If $S \$$ ever appears on the stack then the PDA can move from q_{ℓ} to its only accepting state q_{f}. In the start state q_{0}, the symbol $\$$ is pushed on the stack, and the machine moves to state q_{ℓ}.
2. (10 points) In this problem you will execute an example of the CYK algorithm for deciding membership in a context-free language. Consider the grammar $G=(V, \Sigma, R, S)$ where

$$
V=\{S, A, B, C\}
$$

$$
\begin{aligned}
\Sigma & =\{0,1\} \\
R & =\{S \rightarrow A B \mid B C \\
& =A \rightarrow B A \mid 0 \\
& =B \rightarrow C C \mid 1 \\
& =C \rightarrow A B \mid 0\}
\end{aligned}
$$

(a) Show the result (the matrix of sets) of running the CYK algorithm on the input 10001.
(b) If 10001 is generated by the grammar, then use the result of part (a) to construct a parse tree for it.
3. (10 points) In this problem you will design an algorithm to decide if the language generated by a contextfree language is finite. First let $G=(V, \Sigma, R, S)$ be a Chomsky normal form context-free grammar with the property that every non-terminal is productive. Recall, that a non-terminal A is productive if $A \Rightarrow^{*} x$ for some terminal string x. Using a closure algorthm it can be shown that any context-free grammar can converted to an equivalent grammar with this form. Define the relation $D_{G} \subseteq V \times V$ as follows. A pair $(A, B) \in D_{G}$ if there is a production of the form $A \rightarrow X B$ or $A \rightarrow B X$ in R for some X. Design an algorithm for deciding the finiteness of $L(G)$ that uses the reflexive, transitive closure of D_{G}, called D_{G}^{*}, which can be computed using Warshall's algorithm. Expain briefly why your algorithms works.

