CSE 322
 Winter Quarter 2009
 Assignment 3
 Due Friday, January 23, 2009

All solutions should be neatly written or type set. All major steps in proofs must be justified. Please start each problem solution on a new page and put your name on every page.

1. (10 points) For this problem you will practice converting a NFA to a DFA. Convert the following NFA to a DFA. Show only the reachable states of the DFA. The transition function should be given in a table.

2. (10 points) For this problem you will have practice in showing that regular languages are closed under more operations using finite automata constructions. We define the simple interleaving of two languages A and B over Σ by

$$
A \mid B=\left\{x_{1} y_{1} \cdots x_{n} y_{n}: x_{i}, y_{i} \in \Sigma, x_{1} x_{2} \cdots x_{n} \in A, \text { and } y_{1} y_{2} \cdots y_{n} \in B\right\}
$$

For example if $A=\{a, a b, a a\}$ and $B=\{01,11\}$ then $A \mid B=\{a 0 b 1, a 1 b 1, a 0 a 1, a 1 a 1\}$.
(a) Start with DFA's M_{1} and M_{2} that accept L_{1} and L_{2}, respectively. Then construct an DFA that accepts $L_{1} \mid L_{2}$. A cross product type construction will be useful.
(b) Explain why your machine accepts only those strings in $L_{1} \mid L_{2}$.
3. (10 points) For this problem you will have more practice in showing that regular languages are closed under more operations using finite automata constructions. We define the reversal of a language as follows:

$$
L^{R}=\left\{x^{R}: x \in L\right\}
$$

That is the reversal of a language is the set of reversals of all strings in the language.
(a) Given a DFA M that accepts L construct an NFA M^{\prime} such that M^{\prime} accepts L^{R}.
(b) Explain why your machine only accepts strings in L^{R}.

