## CSE 322 <br> Winter Quarter 2009 Assignment 2 Due Friday, January 16, 2009

All solutions should be neatly written or type set. All major steps in proofs must be justified. Please start each problem solution on a new page and put your name on every page.

1. (10 points) This problem is designed to strengthen your ability to prove facts by induction. The reversal $w^{R}$ of a string $w$ can be defined recursively in the following way.

$$
\begin{aligned}
\varepsilon^{R} & =\varepsilon \\
(x a)^{R} & =a x^{R}
\end{aligned}
$$

where $a \in \Sigma$.
Prove the following: For all strings $x$ and $y$ over $\Sigma,(x y)^{R}=y^{R} x^{R}$. For this your proof should be by induction on the length of $y$. You may use recursive definition of reversal and any basic facts about concatenations such as associativity and the identity properties of $\varepsilon$. That is: $x(y z)=(x y) z$ and $\varepsilon x=x \varepsilon=x$ for all strings $x, y, z$.
2. (10 points) Design deterministic finite automata using a state transition diagram for each of the following languages.
(a) $\left\{x \in\{0,1\}^{*}: 101\right.$ is a substring of $\left.x\right\}$.
(b) $\left\{x \in\{0,1\}^{*}: 111\right.$ is not a substring of $\left.x\right\}$.
(c) $\left\{x \in\{0,1\}^{*}: x\right.$ contains exactly $\left.50^{\prime} s\right\}$.
(d) $\left\{x \in\{0,1\}^{*}: x\right.$ has an odd number of $0^{\prime} s$ or an even number of $\left.1^{\prime} s\right\}$.
3. (10 points) Consider the languages

$$
L_{k}=\left\{x \in\{0,1\}^{*}: x \text { contains exactly } k 0^{\prime} s\right\}
$$

for $k \geq 0$.
(a) Formally define a deterministic finite automaton $M_{k}$ with exactly $k+2$ states that accepts $L_{k}$.
(b) Prove by contradiction that every deterministic finite automaton that accepts $L_{k}$ has at least $k+2$ states. The ideas from problem 1 of assignment 1 are useful.

