Reading Assignment: Lecture notes on pattern matching, Myhill-Nerode, and DFA Minimization. Sipser 2.1

Problems:

1. Use the pumping lemma to prove that the following languages are not regular:
(a) $L_{1}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$.
(b) $L_{2}=\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$.
(c) $L_{3}=\left\{0^{p} \mid p\right.$ is a prime number $\}$.
2. Use the method from the Myhill-Nerode theorem (see lecture notes) to prove that the following languages are not regular:
(a) $L_{4}=\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$.
(b) $L_{5}=\left\{w \mid w \neq w^{R}, w \in\{0,1\}^{*}\right\}$. Recall w^{R} is the reversal of the string w. So this is the language of strings which are not palindromes.
3. Show that the language

$$
L_{6}=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and if } i=1 \text { then } j=k\right\}
$$

satisfies the conditions of the pumping lemma and therefore cannot be proven nonregular by the pumping lemma. That is show that the clause after the "then" in the pumping lemma can be satisfied for this language. Then use Myhill-Nerode (see lecture notes) to prove that the language is not regular.
4. Consider the language A of strings in $\{a, b\}^{*}$ that start and end in different symbols. Give the equivalence classes of this language under the equivalence relation of the language. Recall that two strings x and y are equivalent under A (which we write as $x \equiv_{A} y$) if for all strings $z \in \Sigma^{*}$ the proposition " $x z \in A$ if and only if $y z \in A$ " holds. Here the alphabet is $\Sigma=\{a, b\}$.
5. Extra Credit Do it for the glory, not for the points! Let $C_{k}=\Sigma^{*} a \Sigma^{k-1}$ where $\Sigma=\{a, b\}$. Prove that a DFA which recognizes C_{k} must have 2^{k} states.

