Closed Book, Closed Notes Time Limit: 1 hour 50 minutes

1. Answer True or False to the following questions and briefly JUSTIFY each answer.
(a) If a PDA M actually pushes a symbol on its stack then $L(M)$ is not regular.
(b) For every infinite regular language L over Σ there are strings $x, y, z \in \Sigma^{*}$ such that $|y| \geq 1$ and for every $k \geq 0, x y^{k} z \in L$.
(c) There is no algorithm to tell, given an arbitrary string P whether or not P is the ASCII for a syntactically correct C program.
(d) If L is a CFL and $L=K \cap R$ for a regular language R then K is a CFL.
(e) If L is not a CFL and $L=K \cap R$ for a regular language R then K is not a CFL.
(f) There is no algorithm to tell, given an arbitrary program P and an input x, whether or not P runs forever on input x.
(g) If the stack in a PDA M only has capacity for 100 characters on any input then $L(M)$ is regular.
(h) If L is accepted by some PDA M then L^{R} is accepted by some PDA M^{\prime}.
(i) There is no algorithm to tell, given an arbitrary CFG G and input x whether or not $x \in L(G)$.
(j) Context-free languages are more interesting than regular languages.
2. Classify each of the following sets as:

A Both Regular and Context-Free,
B Context-Free, but not regular,
C Neither context-free nor regular but membership in the language can be decided by an algorithm.
D Undecidable
You do not need to justify your answers.
(a) $\left\{a^{n} b^{m} \mid m=2 n+1\right\} \ldots \ldots$. \quad. \quad C \quad. \quad.
(b) $\left\{a^{n} a^{m} \mid m=2 n+1\right\} \ldots \ldots$. \quad A \quad C \quad D

(d) $\left\{x c x^{R} \in\{a, b\}^{*} \mid x\right.$ has an even number of a's $\} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$............................... \quad C \quad D

(j) $\left\{x y \in\{a, b\}^{*} \mid x \neq y\right\} . \ldots \ldots$. \quad B \quad C \quad D
3. Let $L=\left\{0^{n} 1^{m} \mid m\right.$ is an integer multiple of $\left.n\right\}$.

Use the Myhill-Nerode theorem to show that L is not regular.
4. Let $G=(V, \Sigma, R, S)$ be the context-free grammar with the following set of rules:

$$
S \rightarrow a S a S b|a S b S a| b S a S a|S S| e
$$

(a) Use one of the general constructions that convert a CFG to a PDA to give a PDA M such that $L(M)=L(G)$.
(b) Show each step of a computation of your PDA (list the stack contents, state, and amount of input remaining) that accepts input $a a b b a a a a b$.
(c) (Bonus) What language does this grammar generate?
5. Let $\#_{a}(x)$ be the number of a's in x and $\#_{b}(x)$ be the number of b 's in x.

Let $L=\left\{x \in\{a, b\}^{*} \mid \#_{a}(x)=\#_{b}(x)\right.$ and both are even $\}$.
(a) Give the formal definition of a context-free grammar G such that $L(G)=L$.
(b) Give a parse tree for the string: aabbbaab
(c) Write out the leftmost derivation corresponding to the parse tree in part (b).
6. Let $L=\left\{a^{m} b^{n} c^{p} \mid 0 \leq m<n<p\right\}$. Prove that L is not a context-free language.
7. For any context-free grammar $G=(V, \Sigma, R, S)$, we say that a nonterminal $A \in V$ is useful if there is a derivation $S \Rightarrow^{*} x A y \Rightarrow^{*} w$ for $w \in \Sigma^{*}$ and $x, y \in(V \cup \Sigma)^{*}$; otherwise it is useless. Suppose that G has the following rules:

$$
\begin{aligned}
S & \rightarrow A C|B S| B \\
A & \rightarrow a A \mid a T \\
B & \rightarrow C F \mid b \\
C & \rightarrow c C \mid D \\
D & \rightarrow a D|B D| C \\
E & \rightarrow a A \mid B S A \\
T & \rightarrow b B \mid b \\
U & \rightarrow b A|a| W b \\
W & \rightarrow U b|a| B b
\end{aligned}
$$

(a) Which non-terminals of G are useful?
(b) Modify G to get an equivalent grammar G^{\prime} whose nonterminals consist of precisely the nonterminals of G that are useful. (Don't remove any other non-terminals.)
(c) Describe a reasonably efficient algorithm that will remove all useless non-terminals from a grammar and thus show that any grammar is equivalent to one with only useful non-terminals.

