

Chomsky Normal Form

Grammar rules allowed
$\mathrm{A} \rightarrow \mathrm{BC}$ where $\mathrm{B}, \mathrm{C} \in \mathrm{V} \quad \mathrm{B}, \mathrm{C} \neq \mathrm{S}$
$\mathrm{A} \rightarrow \mathrm{a} \quad$ where $\mathrm{a} \in \Sigma$
$S \rightarrow \varepsilon$

Step 1	
Add new start symbol S_{0} and rule $S_{0} \rightarrow$ S	$\begin{aligned} & \mathrm{S}_{0} \rightarrow \mathrm{~S} \\ & \mathrm{~S} \rightarrow \mathrm{ASA\mid aB} \\ & \mathrm{~A} \rightarrow \mathrm{~B} \mid \mathrm{S} \\ & \mathrm{~B} \rightarrow \mathrm{~b} \mid \varepsilon \end{aligned}$

Step 2

For each a $\in \Sigma \quad \mathrm{S}_{0} \rightarrow \mathrm{~S}$
replace each a that appears on the RHS of a rule of size $=1$ with new variable U_{a} and add rule $U_{a} \rightarrow a$
$S \rightarrow$ ASA |aB
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$

Step 2

For each a $\in \Sigma$ replace each a that appears on the RHS of a rule of size $\neq 1$ with new variable U_{a} and add rule $\mathrm{U}_{\mathrm{a}} \rightarrow \mathrm{a}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}$
$\mathrm{S} \rightarrow \mathrm{ASA} \mid \mathrm{UB}$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$\mathbf{U} \rightarrow \mathbf{a}$

Step 3

For each rule of size
$S_{0} \rightarrow S$
$\mathrm{S} \rightarrow$ ASA | UB
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$\mathrm{U} \rightarrow \mathrm{a}$ $\mathrm{T}_{2}, \ldots, \mathrm{~T}_{\mathrm{k}-1}$ and rules $\mathrm{A} \rightarrow \mathrm{B}_{1} \mathrm{~T}_{2}$
$\mathrm{T}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{~T}_{3}$
$\mathrm{T}_{k-2} \rightarrow \mathrm{~B}_{\mathrm{k}-2} \mathrm{~T}_{\mathrm{k}-1}$
$\mathrm{T}_{\mathrm{k}-1} \rightarrow \mathrm{~B}_{\mathrm{k}-1} \mathrm{~B}_{\mathrm{k}}$

Step 4

Define set $\mathcal{\varepsilon}$ by	$\mathrm{S}_{0} \rightarrow \mathrm{~S}$
For each rule of the	$S \rightarrow$ AT \| UB
form $\mathrm{A} \rightarrow \varepsilon$ add A to	$A \rightarrow B \mid S$
ε	$B \rightarrow \mathrm{~b} \mid \varepsilon$
n Repeat until done:	$\mathrm{U} \rightarrow \mathrm{a}$
If $A \rightarrow B C$ or $A \rightarrow B$ where $B, C \in \varepsilon$ then	$\mathrm{T} \rightarrow \mathrm{SA}$
add A to ε	
	$\varepsilon=\{\mathrm{B}, \mathrm{A}\}$

Define set ε by
For each rule of the form $A \rightarrow \varepsilon$ add A to

Repeat until done: If $A \rightarrow B C$ or $A \rightarrow B$ add A to ε
$\varepsilon=\{B, A\}$

Step 4'

For each $B \in \varepsilon$
For each rule $A \rightarrow B C$ add the rule $A \rightarrow C$

For each $\mathrm{C} \in \varepsilon$
For each rule $A \rightarrow B C$ add the rule $A \rightarrow B$
Remove all $A \rightarrow \varepsilon$ rules
If $\mathrm{S}_{0} \in \varepsilon$ then add
$\mathrm{S}_{0} \rightarrow \varepsilon$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}$
$S \rightarrow A T \mid U B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$\mathrm{U} \rightarrow \mathrm{a}$
$\mathrm{T} \rightarrow \mathrm{SA}$
$\varepsilon=\{B, A\}$

Step 4'

For each A For $\quad \mathrm{S}_{0} \rightarrow \mathrm{~S}$
each rule $A \rightarrow B C \quad S \rightarrow A T|U B| T \mid U$
add the rule $\mathrm{A} \rightarrow \mathrm{C} \quad \mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{S}$
For each $\mathrm{C} \in \varepsilon$
For each rule $A \rightarrow B C$ add the rule $A \rightarrow B$
$B \rightarrow b$

Remove all $A \rightarrow \varepsilon$ rules
$\mathrm{U} \rightarrow \mathrm{a}$
$\mathrm{T} \rightarrow \mathrm{SA} \mid \mathrm{S}$
$\varepsilon=\{B, A\}$
If $S_{0} \in \varepsilon$ then add
$S_{0} \rightarrow \varepsilon$

Step 5

Call rules of form $A \rightarrow B$ unit rules
Call all other rules interesting ones
For each A compute the set $D(A)$ of all other variables reachable from A via unit rules
Remove all unit rules and add all interesting rules on the RHS of vars in D(A) to the RHS for A

$\mathrm{S}_{0} \rightarrow \mathrm{~S}$
$S \rightarrow \underline{A T}|\underline{U B}| T \mid U$
$A \rightarrow B \mid S$
$\mathrm{B} \rightarrow \underline{\mathrm{b}}$
$U \rightarrow \underline{a}$
$T \rightarrow \underline{\text { SA }} \mid S$

Step 5	$\mathrm{S}_{0} \longrightarrow \underset{A \longrightarrow}{\longrightarrow} \mathrm{~S}^{\boldsymbol{T}} \mathrm{C}$
Call rules of form $A \rightarrow B$ unit rules Call all other rules interesting ones For each A compute the set $D(A)$ of all other variables reachable from A via unit rules Remove all unit rules and add all interesting rules on the RHS of vars in $D(A)$ to the RHS for A	$\begin{aligned} & \mathrm{S}_{0} \rightarrow \mathbf{A T}\|\mathrm{UB}\| \mathbf{a} \mid \mathbf{S A} \\ & \mathrm{S} \rightarrow \underline{\mathbf{A T}\|\mathrm{UB}\| \mathbf{a} \mid \mathbf{S A}} \\ & \mathbf{A} \rightarrow \mathbf{A T}\|\mathbf{U B}\| \mathbf{a}\|\mathbf{S A}\| \mathbf{b} \\ & \mathbf{B} \rightarrow \underline{\mathbf{b}} \\ & \mathrm{U} \rightarrow \underline{\mathbf{a}} \\ & \mathrm{~T} \rightarrow \mathbf{A T}\|\mathrm{UB}\| \mathbf{a} \mid \underline{S A} \\ & \mathrm{D}(\mathrm{~B})=\{\mathrm{B}\} \mathrm{D}(\mathrm{U})=\{\mathrm{U}\} \\ & \mathrm{D}(\mathrm{~T})=\mathrm{D}(\mathrm{~S})=\{\mathrm{S}, \mathrm{~T}, \mathrm{U}\} \\ & \mathrm{D}\left(\mathrm{~S}_{\mathrm{A}}\right)=\{\mathrm{S}, \mathrm{~S}, \mathrm{~T}, \mathrm{U}\} \\ & \mathrm{D}(\mathrm{~A})=\{\mathrm{A}, \mathrm{~B}, \mathrm{~S}, \mathrm{~T}, \mathrm{U}\} \end{aligned}$
	14

