CSE 322: Introduction to Formal Models in Computer Science Pattern Matching Paul Beame

Pattern Matching

- Given
 - a string, s, of n characters
 - a pattern, p, of m characters
 - usually m<<n
- Find
 - all occurrences of the pattern p in the string s
- Obvious algorithm:
 - try to see if p matches at each of the positions in s, stopping at a failed match

2

Better Pattern Matching via Finite Automata

- Build an DFA for the pattern (preprocessing) of size O(m)
 - Keep track of the 'longest match currently active'
 - The DFA will have only O(m) states
- Run the DFA on the string O(n)
- Obvious construction method for DFA will be O(m²) but can be done in O(m) time.
- Total O(m+n) time

Knuth-Morris-Pratt Algorithm

- Once the preprocessing is done there are only n steps on any string of size n
 - just follow your nose
- Obvious algorithm for doing preprocessing to build the DFA is O(m²) steps
 - still usually good since m<<n
- Knuth-Morris-Pratt Algorithm can do the preprocessing to build the DFA in O(m) steps
 - Total O(m+n) time

Generalizing

- Can search for arbitrary combinations of patterns not just a single pattern
 - Build NFA for pattern then convert to DFA 'on the fly'. (Compare DFA constructed with subset construction for the obvious NFA.)
- Typical text searches are based on finite automata designs
 - Perl builds this in as a first-class component of the programming language
 - grep