CSE 322
Introduction to Formal Models in Computer Science

Myhill-Nerode Theorem

DEFINITION Let A be any language over Σ^{*}. We say that strings x and y in Σ^{*} are indistinguishable by A iff for every string $z \in \Sigma^{*}$ either both $x z$ and $y z$ are in A or both $x z$ and $y z$ are not in A. We write $x \equiv_{A} y$ in this case.

Note that \equiv_{A} is an equivalence relation. (Check this yourself.)

DEFINITION Given a DFA $M=(Q, \Sigma, \delta, s, F)$ we say that two strings x and y in Σ^{*} are indistinguishable by M iff $\delta^{*}(s, x)=\delta^{*}(s, y)$, i.e. the state reached by M on input x is the same as the state reached by M on input y. We write $x \equiv_{M} y$ in this case.

Note that \equiv_{M} is an equivalence relation and that it only has a finite number of equivalence classes, one per state. In fact, the equivalence classes of \equiv_{M} are precisely the sets of inputs that you would have used to document the states of M.

Lemma 1 If $A=L(M)$ for a DFA M then for any $x, y \in \Sigma^{*}$ if $x \equiv_{M} y$ then $x \equiv_{A} y$.
Proof Suppose that $A=L(M)$. Therefore $w \in A \Leftrightarrow \delta^{*}(s, w) \in F$. Suppose also that $x \equiv_{M} y$. Then $\delta^{*}(s, x)=\delta^{*}(s, y)$.

Let $z \in \Sigma^{*}$. Clearly $\delta^{*}(s, x z)=\delta^{*}(s, y z)$. Therefore

$$
\begin{aligned}
x z \in A & \Leftrightarrow \delta^{*}(s, x z) \in F \\
& \Leftrightarrow \delta^{*}(s, y z) \in F \\
& \Leftrightarrow y z \in A
\end{aligned}
$$

It follows that $x \equiv_{A} y$.
This lemma says that whenever two elements arrive at the same state of M they are in the same equivalence class of \equiv_{A}. This means that each equivalence class of \equiv_{A} is a union of equivalence classes of \equiv_{M}.

Corollary 2 If A is regular then \equiv_{A} has a finite number of equivalence classes.
Proof Let M be a DFA such that $A=L(M)$. The Lemma shows that \equiv_{A} has at most as many equivalence classes as \equiv_{M}, which has a finite number of equivalence classes (equal to the number of states of M).

We now get another way of proving that languages are not regular, namely given A find an infinite sequence of strings x_{1}, x_{2}, \ldots and prove that they are not equivalent to each other with respect to \equiv_{A}.

Claim $3 A=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.
Proof Consider the infinite sequence of strings x_{1}, x_{2}, \ldots where $x_{i}=0^{i}$ for $i \geq 1$. We now see that no two of these are equivalent to each other with respect to \equiv_{A} : Consider $x_{i}=0^{i}$ and $x_{j}=0^{j}$ for $i \neq j$. Let $z=1^{i}$ and notice that $x_{i} z=0^{i} 1^{i} \in A$ but $x_{j} z=0^{j} 1^{i} \notin A$. Therefore no two of these strings are equivalent to each other under \equiv_{A}, so \equiv_{A} has an infinite number of equivalence classes. Therefore by the above Corollary, A cannot be regular.

One nice thing about this method for proving things nonregular is that, unlike the pumping lemma, it is always guaranteed to work because the corollary above is a precise characterization of the regular languages. The statement of this fact is known as the Myhill-Nerode Theorem after the two people who first proved it.

Theorem 4 (Myhill-Nerode Theorem) A is regular if and only if \equiv_{A} has a finite number of equivalences classes. Furthermore there is a DFA M with $L(M)=A$ having precisely one state for each equivalence class of \equiv_{A}.

Proof The corollary above already gives one direction of this statement. All we now need to show is that if \equiv_{A} has a finite number of equivalence classes then we can build a DFA $M=$ ($Q, \Sigma, \delta, s, F)$ accepting A where there is one state in Q for each equivalence class of \equiv_{A}. Here is how it goes:

Let A_{1}, \ldots, A_{r} be the equivalence classes of \equiv_{A}. Remember that the A_{i} are disjoint and their union is all of Σ^{*}. Define $Q=\left\{q_{1}, \ldots, q_{r}\right\}$. Our goal will be to define the machine M so that $\delta^{*}(s, x)=q_{j} \Leftrightarrow x \in A_{j}$.

Let $s \in Q$ be the one q_{i} such that $\epsilon \in A_{i}$.
Note that for any A_{j} and any $a \in \Sigma$, for every $x, y \in A_{j}, x a$ and $y a$ will both be contained in the same equivalence class of \equiv_{A}. (For any $z \in \Sigma^{*}, x a z \in A \Leftrightarrow y a z \in A$ since x and y are in the same equivalence class of \equiv_{A}.)

To figure out what $\delta\left(q_{j}, a\right)$ should be, all we do is pick some $x \in A_{j}$, find the one k such that $x a \in A_{k}$ and set $\delta\left(q_{j}, a\right)=q_{k}$. The answer will be the same no matter which x we choose.

To pick the final states, note that for each j, either $A_{j} \subset A$ or $A_{j} \cap A=\emptyset$. Therefore we let $F=\left\{q_{j} \mid A_{j} \subseteq A\right\}$.

It is easy to argue by induction that $\delta^{*}(s, x)=q_{j} \Leftrightarrow x \in A_{j}$. This, together with the choice of F ensures that $L(M)=A$.

By the proof of the corollary above we know that the number of states of M constructed above is the smallest possible. (In fact, if one looks at things carefully one can see that all DFA's of that size for A have to look the same except for the names of the states.)

However, in general, even though A is a regular language we may not have a nice description of \equiv_{A} at our disposal in order to build M. What happens if all we have is some DFA accepting A ? That's the subject of the next handout, Minimizing DFAs.

