
CSE 322 - Introduction to Formal Methods in Computer Science
Converting DFAs to Regular Expressions

Dave Bacon
Department of Computer Science & Engineering, University of Washington

Last time we saw how, given a regular expression, we could take this expression and construct an NFA which
accepted the language of this regular expression. Thus if a language is expressible by a regular expression, the
language is regular. Now we will show that if a language is regular, then the language is expressible by a regular
expression. We will do this by showing that a DFA can be converted into a regular expression whose language is the
language of the DFA. In order to achieve this result we will introduce yet another type of machine, a GNFA, where
the G stands for generalized. You can bet this will be among the last times were modify the finite automata model,
because how can you go beyond generalizing? (Colonels are below Generals, eh?)

I. GENERALIZED NONDETERMINISTIC FINITE AUTOMATA

Generalized nondeterministic finite automata (GNFA) are nondeterministic finite automata in which instead of
having transitions labeled by sets of elements of the alphabet, the transitions are labeled by regular expressions. A
GNFA works by reading blocks of symbols from the input, not just one input at a time, according to the regular
expression labeling a transition.

We will work with GNFAs which satisfy a list of requirements which will make our life easier. This list includes

1. The start state has no arrows coming into it and has an out arrow leading to every other state in the GNFA.

2. There is only one accept state. This accept state has no arrows coming out of it, but has an arrow coming into
it from every other state in the GNFA.

3. For all other states besides the start state and accept state, there are transitions between all of these states as
well as from each of these states to themselves.

To begin our discussion of how to convert a DFA into a regular expression, we first start out by converting a DFA
into a GNFA. This can always be done by constructing a GNFA with two extra states, the new start and accept
states of the GNFA and properly modifying the transitions in the GNFA. In particular we take the original DFA and
add a start state and an accept state. From this new start state we add arrows to all other states. All of these new
transitions are labeled by ∅ unless the transition is to the original start state of the DFA. For the transition to the
original start state we label the transition by ε. Next we take all states in the original DFA and add arrows from these
states to the new accept states. All of these transitions are labeled by ∅, except for transitions from the accept states
of the original DFA, which are labeled by ∅. Finally for the connections among the states of the original DFA, we
make two modifications. If there is not a transition between two states or from a state to itself, we add this transition
and label it by ∅. If a transition between two states is labeled by more than one arrow, we label this state by the
regular expression giving the union of these symbols.

Lets do this for a very simple example. Suppose our DFA is

// q0

0
��

1

		

q1

0,1

OO

2

Then the GNFA corresponding to this DFA is given by

qs

∅

��
ε //

∅

��>
>>

>>
>>

>
q0

0

��

1

		
∅ // qa

q1

0∪1

OO
ε
>>}}}}}}}

∅

UU

.
So we have seen how we can convert a DFA into a GNFA which is two states bigger than the DFA. In order to show

how we can obtain a regular expression from a DFA, we will now show how we can take a k > 2 state GNFA and
convert it into a k − 1 state GNFA. If we do this repeatedly starting from the GNFA we constructed from our DFA,
we will wind up with a GNFA which has 2 states. Such a GFNA will consist of a start state and an accept state with
a transition labeled by a regular expression. This regular expression will be the regular expression corresponding to
the DFA.

II. TURNING A k STATE GNFA INTO A k − 1 STATE GNFA

We will now (informally at first) discuss how to take a k state GNFA with k > 2 and convert it into a k − 1 state
GNFA. We will do this by selecting one of the states in the GNFA which is not the start or accept state and removing
it from the GNFA. When we remove this state will will have to repair the GNFA so that it still accepts the same
language. If we do this repeatedly starting from a k state GNFA we will eventually end up with a 2 state GNFA.

How do we do this removing of a state from the GNFA? Well supose that we pick a state qr which we are removing
from the GNFA. What we will do is that for every incoming and outgoing transition for the GNFA (including ones
which come in and return to the same state) we will apply a procedure which successfully repairs the removing of qr.
To illustrate this it is useful to examine the diagram of a pair of states, one with an incoming transition, and one with
an outgoing transition,

qi

r1

 @
@@

@@
@@

@

r4 // qj

qr

r3

>>~~~~~~~~

r2

UU

Here qr is the state we are ripping out. qi and qj are here shown to be different, but they could be the same. In order
to successfully repair the GNFA when we remove qr we need to remove the arrows shown and replace them with one
arrow from qi to qj which has a regular expression of

qi
r1r∗2r3∪r4 // qj

Those letters are small but if you squint you will see that they read r1r
∗
2r3 ∪ r4. Intuitively, what is going on is r1r

∗
2r3

is taking care of paths in the GNFA which go through qr starting in qi and ending in qj . Since the state could have
made this transition by itself, we also need to include the fact that it could go via the transition labeled by r4. Thus
we need to union r1r

∗
2r3 and r4.

III. LET’S GET FORMAL

Okay, lets get formal on this problem. First of all we need to define GNFAs formally. A GNFA is similar to a
NFA with the exception that the transition function is of a particular form and is now labeled by regular expression.

3

Let qs and qa be the start and accept states of the GNFA. Then the transition function will be a function from
(Q− {qa})× (Q− {qs}) to the set of regular expressions over the alphabet we are using, Σ. Note that the transition
function we are going to define this way is different from the way we have normally defined transition function (which
took as input states and a symbol or set of symbols from the alphabet.) Here if we have δ(qi, qj) = r, then we mean
that the transition from qi to qj is labeled by the regular expression r. The domains we have given above guarantee
that our GNFA is of the form we described above.

Okay, so here is the real formal definition. A GNFA is given by the 5-tuple (Q,Σ, δ, qs, qa) where

1. Q is the finite set of states which includes the states qs and qa.

2. Σ is our friend the alphabet.

3. The transition function is given by δ : {Q−{qs}}×{Q−{qa}} → R where R is the set of all regular expressions
over the alphabet Σ.

4. The start state is qs.

5. The accept state is qa.

Given this definition, we can then write down the rules form when a GNFA accepts a string w in Σ∗. We say that a
string w ∈ Σ∗ is accepted if w = w1w2 . . . wk where each wi is in Σ∗ and a sequence of states q0, q1, . . . , qk exists such
that

1. q0 is the start state: q0 = qs.

2. qk is the accept state: qk = qa.

3. For each i we have that the substring wi is in the language of the regular expression r, wi ∈ L(ri), and ri is the
regular expression of the transition, δ(qi−1, qi) = ri.

Now lets formally describe the process of removing states from the GNFA. Let G = (Q,Σ, δ, qs, qa) be a GNFA
with k > 2 states. Define the procedure REDUCE(G) as follows. The procedure will take as input the GNFA G and
produce as output a GNFA given by G′ = (Q′,Σ, δ′, qs, qa). The new states Q′ is produced by randomly selecting
any state of Q which is not qs and qa and removing it from Q. Call this state qr, then Q′ = Q − {qr}. To define
the new transition function, we repair all of the arrows as described above. Formally: for any qi ∈ Q′ − {qa} and
qj ∈ Q′ − {qs} define the new transition function by

δ′(qi, qj) = δ(qi, qr)δ(qr, qr)∗δ(qr, qj) ∪ δ(qi, qj)

. Using REDUCE(G) we can define another procedure CONVERT(G) which takes as input a k ≥ 2 state GNFA and
returns the regular expression whose language is the same as GNFA.

CONVERT(G) :

1. Let k = |Q| for the GNFA G = (Q,Σ, δ, qs, qa).

2. If k = 2, then there is a single transition arrow between qs and qa. Output this regular expression.
In other words output r = δ(qs, qa).

3. If k > 2 then apply REDUCE(G) producing a new GNFA G′. Return CONVERT(G′).

Note that this is a recursive definition.
Now lets prove that the regular expression returned by CONVERT(G) is equivalent to G. We will do this by

induction on the number of states in G.

Basis: If k = 2, then the GNFA is made up of only 2 states and one transition function from this state
to the accept state. The regular expression label for this this transition describes all strings that allow G
to get to the accept state. Hence this expression is equivalent to G.

Inductive step: To do this, we need to show that our procedure REDUCE(G) which produces G′ and
G accept the same languages. Suppose that G accepts the input w. Then in an accepting branch of the
computation, G enters into the state qs, q1, q2, . . . , qa. If none of these states is the state we remove, then
clearly G′ will accept the string. This is because the newly constructed G′ will only access transitions
which have not been changed in our construction of G′. If, on the other hand qr does appear, then the
states, qi and qj , between which qr appears in G′ have a regular expression accepting all strings taking

4

qi to qj . Thus G′ must accept w. Now we must also show that if G′ accepts w then G accepts w in our
construction of REDUCE(G). Each transition arrow in G′ describes either a transition which was taken
directly in G or via qr in G. Thus G must also accept this string. Thus we have shown that REDUCE(G)
and G accept the same language. The inductive hypothesis tells us that when the algorithm calls itself
recursively on input G′ the result is a regular expression equivalent to G′ because G′ has k − 1 states.
Hence, as we have just shown, the regular expression is equivalent to G.

IV. EXAMPLE

Lets work through an example. Indeed lets do it for the DFA we considered above. As we noted above the GNFA
constructed directly from this DFA has four states:

qs

∅

��
ε //

∅
��>

>>
>>

>>
>

q0

0

��

1

		
∅ // qa

q1

0∪1

OO
ε
>>}}}}}}}

∅

UU

Lets begin by removing q0. This will create a regular expression transition from qs to qa given by ε1∗∅ ∪ ∅. Since
concatenating with an empty set produces and empty set, this is equivalent to the ∅. Second, there will be a regular
expression transition from q1 to itself, the one created by traversing through q0. This one is given by (0 ∪ 1)1∗0 ∪ ∅.
We can reduce this to Σ1∗0. There is a transition from the start state to q1. This has the regular expression,
ε1∗0∪ ∅ = 1∗0. Finally, there is a transition from q1 to the accept state qa with regular expression (0∪ 1)1∗∅ ∪ ε = ε.
The resulting new GNFA with 3 states is therefore

qs

∅

��

1∗0
��>

>>
>>

>>
>

qa

q1

ε
>>}}}}}}}

Σ1∗0

UU

.
Next we apply the same procedure to the three state GNFA. This will yield only a transition between the start and

accept states. The regular expression for this transition will be 1∗0(Σ1∗0)∗ε ∪ ∅. This can be reduced to 1∗0(Σ1∗0)∗.
The final GNFA is

qs
1∗0(Σ1∗0)∗ // qa

. Thus the regular expression for this DFA is 1∗0(Σ1∗0)∗. Cool.

