[
5]

G CHAPTER 7. PROPERTIES OF CONTEXT-FREE LANGUAGES

7.2.4 Exercises for Section 7.2

Exercise 7.2.1: Use the CEL pumping lemma to show each of these languages
not 1o be context-froe:

*a) lathldf i< § < kL
by {abed | i < nl.

o} {07 | pis a prime}. [hnd: Adapt the sane ideas used in Example 1.3,
which showed this language not 1o be regular,

A {0 g =t

Ve) {a"be' | << 20l

VI JwewTe D ds aostring of 0% and 1s}. That is. the set of strings conststing
of some string w ollowed by Bhe same string in reverse, and then the string
1 agail, such as 001100001,

Exercise 7.2.2: When we try to apply the pumping lemma to a CFL, the
“adversary wing.” and we cannot complete the proof. Show what goes wrong
when we choose £ to be one of the following languages:

a) {00,111},
By {071 D> 1

*) The ser of palindromes over alphabet J0.1}.

Exercise 7.2.3: There s a stronger version of the CFL pmmping lemma known
ag Ogden’s leinme. Tv differs from the pumping lemma we proved by allowing
us Lo focus on any n “distinguished” positions of a string = and guaranteeing
that the strings o be pumped have between 1 and n distinguished positions,
The advamiage ol this ability is that a Janguage may have strings cousisting
of two parts, one of which can be pumped without producing strings not in
the language, while the other does produce strings outside the language when
pumped. Without being able to insist that the pumping take place in rhe latter
part, we cannol corplete a proof of non-context-freeness. The formal statcment
of Ogden’s lemma is: IF L is a CFL, then there is a constant n. such that if 2
is any string of length at least nin L, in which we select ar least n positions to
he distinguished, then we can write = = woetery, such that:

L. 2w has at most n distinguished positions.
2. has at least one distinguished position.
3. For all 4, welwae'y is in L.

Prove Ogden’s lemuna. Iint: The proof is really the same as that of the pump-
ing lemma of Theorem 7.18 if we pretend that the nondistinguished positions
of = are not present as we select a long path in the parse troe for 2.

7.3, CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGLES 287

Exercise 7.2.4: Use Ogden’s loonma (Exercise 7.2.3) to simplily the proof
Cxample 7.21 thar L= {wwe | ds in {0014} is not a CFL. Hing: With
SO0 10" 1, make the two middle Hlocks distinguished.

Exercise 7.2.5: Use Ogden's lemma (Exercise 7.2.3) to show the following
Innguages are not CFL

Pa) {07108 | = max(i.)

by e | D # n). Hint: I onois the constant for Opden’s lemma, consider

the string 2 = et

7.3 Closure Properties of Context-Free
Languages

We shall now consider some of the operations on context-free languages that

are guaranieed to produce a CFL. Many of these closure properties will parallel

the theorems we had for regular languages in Section <12, However. there are

some differences.

First.
svinbol in the sirings of oue language by an entire language. This operation, a
generalization of the homomoerphismn that we studied in Section 4.2.3. i3 useful in
proving some other closure properties of CEFL s, such as the regnlar-expression
operalions: union. concatenation. and closure. We show that CFL's are closed

we introcduce an operation called substitution, in which we replace each

wder homomorphisms and inverse homomorphisins. Unlike the regular lan-
guages, the CFL's are not closed under intersection or difference. However, the
intersection or difference of & CFL and a regular language 1s alwavs a CFL.

7.3.1 Substitutions

Let ¥ be an alphabet, and suppose that for every symbol ¢ in X, we choose a
language L,. These chosen languages can Le over any alphabets, not necessarily
¥ and not necessarily the same. This choice of languages delines a function s
(a subslifution) on &, and we shali refer to L, as s{¢) for cach symbol «.

If wr = cyon - -a, 18 a string in ©7, then s(w) s the language of all strings
iy -y such that string oy 13 i the language sla;) for i = 1.2, 0 0 Pwt
another way, s{w) is the concarenation of the languages s{ays(as) - sla,).
We can further extend (he definition of ¢ 1o apply to languages: s{L) is the
union of s(w) for all strings w in L.

Example 7.22: Suppose s(0) = "B | > 1} and s(1) = {ae. bb}. That is,
s is a substitution on alphabet ¥ = {0.1}. Language s{0) is the set of strings
with one or more a's Tollowed by an equal mumber of bs, while s(1} i the finite
language consisting ol the two strings wa and bh.

288 CHOAPTER 7. PROPERTIES OF CONTEXT-FREE LANGUAGES

A

Let w = 01. Then s(w) is the concatenation of the languages s(0)s(1). To
be exact, s{w) consists of all strings of the forms «”iaa and a™d" 2 where
n =l

Now. suppose L = L(87), that is. the set of all strings of 0°s. Then s(L) =
(5(0) This language is the set of all strings of the form

T RN e R R

for some b > 0 and any sequence of choices of positive Integers . na. ..., My,
[« includes strings such as e, aabbaanbbb, and aboabbobab. O

Theorem 7.23: If L is a context-free language over alphabet X, and s 15 a
substitution on ¥ such that s{a) is a CFL for each a in ¥, then s(L) is a CI'L.

PROOE: The essential idea is that we may take a CFG for L and replace each
terminal o by the start symbol of 2 CFG for language s(a). The result is a
single CFG that generates s{L). However, there are a few details that must be
gotten right to make this idea work.

More formally, start with grammars for each of the relevant languages, say
G ={(V.R.P8) for L and G, = (V,.T,. F;. 5,) for each o in X Since we
can choose any names we wish for variables, let us make sure that the sets of

variables are disjoint: that is, there is no symbol A that is in two or more of
17 and any of the V,'s. The purpose of this choice of names is to make sure
that when we combine the productions of the various grammars into one set
of productions, we caunot gei accidental mixing of the productions from two
grammars and thus have derivations that do not resemble the derivations in
any of ithe given grammars,

We construct a new graminar & = (V0,7 P 5} for s(/L). as follows:

e 17 is the union of V7 and all the V¢ for e in 3.
o 17 15 the union of all the T,,'s for ¢ in X,
s P consists of:

1. Al productions in any . for ¢ in X,

2. The productions of P, but with cach terminal a in their bodies re-
placed by S, everywlhere g occurs.

Thus. all parse trees in grammar &' start out like parse trees in (7, but instead
of generating a vield in $*, there is a frontier in the tree where all nodes have
labels that are S, for some g in Y. Then. danglizg from ezch such node is a
parse troe of Gy, whose vield is a terminal string that is in the language s(a).
The typical parse trec is suggested in Fig. 7.8,

Now. we must prove that this construction works. in the sense that G
generates the language =(L). Formally:

o A string w is in L{G') if and only if w is in s(L).

» 3. CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES 2809

S
P
- IS
o ~.
/,, \‘\
e N
- S
- ’ “\\

Su - “Sn‘., S
(e 2 - I
i "

\\ / .“\ £ "
oy N 4 b
Yy Ay i

Figure 7.8 A parse tree in &' begins with a parse trec in & and linishes with
mawy parse trees, cach in one of the grammars G,

(1) Suppose 10 is in s(L). Then there is some string @& = aray -, in L, and
strings @; in sleg) for i = 1.2,....n. such that w = e a,. Then the
portion of G’ that comes from the productions o o Wiih S, substiruted for
each a will 0('11('1.1{(' a string that looks like . but with S, in place of each o
This string i3 Su, Sas - Sa, . This part of the derivation ()i w s suggested by
the upper triangle in Fig. 7.8.

Since Lhe productions of each G, are also productions of (. the derivation
of @ from S, is also a derlvation in (' The payse trees for these derivations
are suggested by the lower triangles in Fig. 7.8 Since the vield of this parse
croe of G is s - an = w0, wo conclude that w is in L{GT).

(Only-if) Now suppose w is in L{G"). We claim that the parse tree for w
must look like the tree of Fig. 7.8, The reason is that the variables of each
of the grammars G and G, for ¢ in X are disjeint. Thus, the top of the tree,
starting from variable S, must use only productions of & until some symbot S,
i derived. and below that S, only productions of grammar G, may be used.
Ag a result. whenever w has a parse tree T, we can ldentify a string aiaz - -ty
in LG, and strings #; in language s{a;). such thar

1. = @y -y, and

2. The string Su, Sas - Se, is the vield of a tree that is formed from T by
deloting some subtrees (as suggested by Fig. 7.8).

But the string xas -+ ay, 18 in s(L), since it is formed by substituting strings
¢; for each of the a;’s. Thus, we conclude w is in 5L} C
7.3.2 Applications of the Substitution Theorem

There are several familiar closure properties, which we studied for regular lan-
guages. that we can show for CFL™s using Theorers 7.23. We shall list them all
in ome theorer.

290 CHAPTER 7. PROPERTIES OF CONTEXNT-IREE LANGUAGES

Theorem 7.24: The context-free languages are closed under the following
operations:

1. Union.

2. Concatenation.

3. Closure (%3, and positive closure (7.

4. Homomorphism.

PROOF: Each requires only that we set up the proper substitution. The proofs
below each involve substitution of context-free languages into other conlext-free
Ianguages, and thercfore produce CFLs by Theoremn 7.23.

be CFL's. Then Ly U Ly is the language s{L},
where L s the language {1, 2}, and 5 13 the substitution defined by 5{1) =
Ly oand s(2) = L.

1. Undon: Lo Ly oand 1

:
[

2. Concatenation: Again let L) and La be CFL's. Then I, Ly is the language
s(L), where 1 is the language {12}, and s is the same substitution as in
case (1),

3. Closwre and positive closure: 11 Ly is o CFL. L is the language {147, and
& 1s the substitution s{1) = L, then L7 = s(L). Similarly, if £ is instead
the lamguage {1}, then L = s(L).

L Buppose Lis a CFL over alphabet 32 and A is a homomorphism on 3. Let,
s be the substitution that replaces cach symbol a in ¥ by the language
consisting of the one string that is h{a). That is. s(a) = {h{a)}. for all «
in X, Then (L) = s(L).

7.3.3 Reversal

The CFL's are also closed under reversal, We cannot use the substitution
theoreu. but there is o stmple construction using grammars.

Theorern 7.25: If [is a CFL, then so is LY.

PROOT: Let L= L(G) for some CFL G = (V. T, P, S). Coustruct G =
(V.7 PF 8, where PFig the “reverse” of each production in 2. That is, if
A = aisa production of G, then 4 - a® is a production of GF. It is an CAsY
induction on the lengths of derivations in & and F to show that LGRYy = L7,
Essentially, all the sentential forms of G are reverses of sentential forms of G.
anud vice-versa. We leave the formal proof as an exercise. O

7.3, CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES 291

7.3.4 Intersection With a Regular Language

The CFL’s are not closed under intersection. Here is a simple example that
proves they arc not.

Example 7.26: We learned in Example 7.19 that the language
L={0"1"2" | n > 1}

is noi a contexi-free language, Howover, the following two languages ere con-
text-free:

Ly = {07127 |2 Li = 1)
Lo = {00727 [0 > 1> 1)

A gramumar for Ly i

S — AR
A—=041]01
B 282

In this grammar, A generates all strings of the form (717, and I3 generates all
strings of 2’s. A grammar for Ly is:

S — AR
A—=040
B 1B2)|12

It works similarly, but with A generating any swring of 0%s. and B generating
matching strings of 1's and 2%,

However. [= L, 11 Ls. To see why, observe that L) requires that there be
the same number of 9% and s, while L requires the numbers of 1’s and 2's
to be equal. A string in both languages must have equal munbers of all three
symbols and thus be in L.

If the CFL’s were closed under intersection, then we could prove the Talse
statement that £ 1s eontext-free. We conclude by contradiciion that the CF1's
are not closed under intersection, O

Om the other hand, there is a weaker claim we can make about intersection.
The context-free languages are ¢losed under the operation of “interscclion with
a regular language.” The formal statement and proof is in the next theorem.

Theorem 7.27: If L is a CFL and R is a regular language. then L 7 R s a
CFL.

292 CHAPTER 7. PROPERTIES OF CONTEXT-FREE LANGUAGES

FA |
Sttt B N S

] AND = Accept

input

. reqect
PDA | b

slaie
i

: Stack

Figure 7.9: A PDA and & FA can run in parallel to create a new PDA

PROOY: This proof requires the pushdown-automaton representation of CFL's,

as well as the finite-automaton representation of regular languages, and genor;

alizes the prool of Theorem 4.8, where we ran two finite automata “in parallel”

to get the intersection of their languages. Here, we run a finite antomaton “in

parallel” with a PDA. and the result is another PDA. as suggested in Fig. 7.9,
Formally. let

P=(Qp. 2. 0p.qp, Zy. Fip)
he a PIA that acceprs L by final siate, and let
A={Q4.X. 04, q4.Fa)
be a DFA for B, Construct PDA
P =i{Qp =« QY. 1.8, (gp,qa). Zo, Fpp x Fu)
where 8((q. p).a, X) is defined to be the set of all pairs ((r.s).v) such that:

1os=2d4 (p.), and
2. Pair () is i dp{g.a, X).

That is, for cach move of PDA P, we can make the same move in PDA 2, and
in addition, we carry along the state of the DFA 4 in a second (:()Jrn])ci)neht of
the state of PP'. Note that @ may be a svinbol of X, or o = ¢. In the former
case, d(p,a) = da(p.a), while if @ = ¢. then 5(1)._ i) = p; e, A does not change
state while 7 makes moves on ¢ input.

It is an easy induction on the numbers of moves made by the PDA’s that
{gp. e, Zp) ‘: {g.c.v) if and only if ({(qp.q4).w, Zo) [Fi ((g.p).e.~). where

7.3, CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES 293

o= 8 {ga.). Weleave these inductions as exercises. Since (g, p) is an accepting
state of P’ if and only if ¢ is an aceepting state of P, and p is an accepting state
of A. we conclude that P'accepts w if and only if both P and A dor ie., wis
inLNK O

Example 7.28: In Fig. 6.6 we designed a PDA called I to accept by final
state the set of strings of i’s and ¢’s that represent minimal violations of the
rule regarding how if’s and else’s may appear in C programs. Call this language

L. The PDA F was defined by
Pe={{p.qrh{ic; {Z. Ko} dp.p. Xo {r})
where dp consists of the rules:
1. dp(p.e, Xo) = {{g. ZXo)}.
2. brla,i.2) = {(q. 22)}.
3 dr(g.e, Z) = {{g, o)}
4. dplg e Xo) = {(r.e)}-

Now. let us introduce a finite automaton

A=({st} 4, e da.8.18.th)

that accepts the strings in the language of i7e”. that is, all strings of ¢'s followed
by e’s. Call this language B. Transition function 4.4 Is given by the rules:

a) dals,1) =s.
b) da(s,e) =1
¢} dalt.e) =1,

Strictly speaking. A4 is not a DFA, as assumed in Theorem 7.27, because it 13
1 a dead state for the case that we see input @ when in state £ However,
the same construction works even for an NFA, since the PDA that we construct
is allowed to be nondeterministic. In this case, the constructed PDA is actually
deterministic, although it will “die” on certain sequences of input.

We shall construct a PDA

P = ({p.g,r} % {5 t4 (i eh A2 X0} 0, (p,), Xou) % {s,1])

The transitions of & are listed below and indexed by the rule of PDA F {a
mumber from 1 to 4) and the rule of DFA A (& letter a, b, or ¢) that gives rise
to the rule. In the case that the PDA F makes an e-transition, there is no rule
of 4 used. Note that we construct these rules in a “lazy™ way, starting with the
state of I that is the start states of Fand A, and constructing rules for other
states only if we discover that F can enter that pair of states.

204 CHAPTER 7. PROPERTIES OF CONTENT-FREE LANGUAGES

Loo{(psye. o) = {{(g.5). ZX0) 1
g Z) = {{(g.9).22)).
goshoe, Z) = {{lq. 1))}

4 8{{g.s).
exercised. The reason is that it ig impossible to pop the stack without

{(
20 A({
3b &{(

e, Xo) = {({r.s).c)}. Note: one can prove that this rule is never
secing an e, and as soon as P sees an e the second component of its state
becowes £

Be d{(q. e Z) = {{ig.th o)}
Lod{{g. 0, e. Xo) = {6y})

The langnage L N A is the set of strings with some mumber of i's followed by
one wore ¢, that is, Ji%e” T | > 01, This set is exactly those H-clse violations
that consist of a block of i0s followed by a block of clse’s. The language is
evidently a CFL. generated by the grammar with productions S -» 15¢ | e

Note that the PDA 17 aceepts this language L 0 K. After pushing 2 onto
the stack, it pushes more Z7s onto the stack i response to inputs ¢, staving i
state (g.5). As soon as il sees an e, it goes to state {g.#) and starts popping

the stack, Tt dies if it sees an ¢ until Xy 1s exposed on the stack. At that point,

it spontaneously transitions to state (v, £y and accepts. 3

Since we know that the CFL's are not closed under intersection, but are
closed pnder intersection with a regular language. we also know abour the set-
difference and complementation operations on CEFL's. We summarize these
properties in owe theorem.

Theorem 7.29: The following are true about CFL's L. L. and Ly, and a
regular language fi.

1. L~ I?is a context-free language,

2. L is not necossarily a context-free language.

3. Ly — Lo is not necessarily context-free.
PROOF: Tor (19, note that L - 7 = L0 R I I is vegular, so is 1 regular by
Theorem 1.5, Then [— R is a CFL by Theorem 7.27.

For (2. suppose that 1 is alwavs context-free when Lois. Then since

and the CFLs are closed amder union, 16 would follow that the CFL's are closed

under intersection. However, we know they are not rom Exanple 7.26.
Lastly. let us prove (3). We know X7 is a CFL for every alphabet X5 de-

signing a grammar or PDA for this regular language is easy. Thus, if Ly — Ly

7.3, CLOSURE PROPERTIES OF CONTENT-FREE LANGUAGES 295

were alwayvs a CFL when Ly and Lo ave, it would follow that Y7o Lowas alwavs

a CFL when L is. However, &7 — L is L when we pick the proper alphabet
I i

. Thus, wo would contradiet (2) and we have proved by contradiction that

Ly - L is not necessarily a CHFi.. O

7.3.5 Inverse Homomorphism

Let 1s review from Section 4.2.4 the operation called “inverse homomorphisi.”
If J s w homomorphism, and L s any language, then 1 ML) is the sot of
strings w such that A(w) is in L. The proof that regular languages are closed
under inverse homomorphism was sugpgested tn Fig. 4.6, There, we showed how
to design a finite automaton that processes its input symbols a by applving a
homororphism /r to it, and simulating another finite antomaton on the sequence
of inputs hia).

We can prove this closure property of CFL's in much the same way, by usiug
PDAs instead of finite automata. However. there & one problom that we face
with PDA’s that did not arise when we were dealiug with finite automata. The
action of & finite aulomaton on a sequence of inputs is A stawe transition, and
thus looks, as far ag the constructed automwmaton is concerned, just like a move
that a finite automaton might make on a single input symbol.

When the automaton is a PDA. in contrasi, a sequence of woves might not
look like a move on one input svbol. In particular. innomoves, the PDA can
pop 1 symbaols off its stack. while one move can only pop one symbol. Thus.
the construction for PDA’¢ that is analogons to Fig. 0.6 is somewhat wmore
complex; it is skerched in Fig. 7.10. The key additional idea is that after input
a is read, B{a) is placed i a “huffer” The svrobols of Ala} are used one al
a time. and fed to the PDA heing simulazed. Only when the buffer is emply
does the constructed PDA read another of its nput svmbols and apply the
homomorphism to it. We shall formalize this construetion in the pext theorem.

Theorem 7.30: Let L be a CFL and A a bomomorphizm. Then 10010} s a
CFL.

PROOFE: Suppose A applies to symbols of alphabet X and produces strings in
T We also assume that L is a language over alphabet 7. As suggested above,
we start with a PDA P = (Q. 1.1, 4, qy. Zo. F) that acceprs L by linal state.
Wo construct a new PDA

= QST (gn.e). Zo B x eh) (

=1
oy

where:
1. ¢ is the set of pairs (g,) such that:

(a) ¢ is nstate In ¢, and

B ois a sulfix (not necessarily properd of some string Afa) for some
“ 7 " s fl . b

input symbol a in X,

296 CHAPTER 7. PROPERTIES OF CONTEXT-FREE LANGUAGES

Buffer

o i Afa) T

Input ‘*&_v}“ R H_JMJ
L

PDA | L Accept!

state r reject

Figure 7.10: Construciing a PDA to accept the inverse homomorphism of what
a given PDA accepis

That is, the first component of the state of P’ is the state of P, and the
second component is the huffer. We assume that the buffer will period-
ically be loaded with a string h(a), and then allowed to shrink from the
front., as we use its symbols to feed the simulated PDA P. Note that since
3 is finite, and A{a) is finite for all a, there are only a finite munber of
states for P

2. 9" is defined by the following rules:

(a) 8'{(g.€),a. X} = {((q,h(a}):}()} for all symbols o in ¥, all states
g in). and stack symbols X in T. Note that o cannot be ¢ here.
When the buffer is empty, P! can consume its next input syinbol a
and place A{a) in the buffer.

{b) T 6{g, b, A') contains (p.v), where bisin T or b = ¢, then
' ((q.bx),e. X)

contains ({p,x},~). That is, P’ always has the option of simulating
a move of P, using the front of its buffer. If b is a symbol in T, then
the buffer must not be empty, but if 5 = e. then the buffer can be
empty.

3. Note that, as defined in (7.1), the start state of P’ is (go, €); Le., P starts
i the start state of P with an empty buffer.

4. Likewise, the accepting states of P’, as per (7.1}, are those states {g.€)
such that ¢ is an accepting state of P.

The following statement characterizes the relationship between P' and P

7.3. CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES 997

g

» (q(;_._ h(w). Zy) l}:, (p.e.v) if and only if {(go.). w0, Zy) ; (_(p._ e)oev).

The proofs in both directions are inductions on the number of moves made by
the two automata. In the “if” portion, one needs to observe that once the huffer
of P’ is nonempty, it cannot read another input svmbol and must simulate P,
uatil the buffer has become empty (although when the buffer is empty, it may
still simulate). We leave further details as an exercise.

Once we accept this relationship between P! oand J ’, we note that P accepts
hi(w) if and only if ' accepts w, becanse of the way the accepting states of P/
are defined. Thus, L(P') = Y L(P)). O
7.3.6 Exercises for Section 7.3

Exercise 7.3.1: Show that the CFL’s are closed under the following opera-
tions:

* a} init, defined in Exercise 4.2.6(c). Hint: Start with a ONF grammar for
the language L.

*1h) The operation L/a, defined in Exercise 4.2.2. Hint: Again, start with a
ONF grammar for L.

e cyele, defined in Exercise 4.2.11. Hint: Try a PDA-based construction.
Exercise 7.3.2: Consider the following two languages:

Ly = &P e™ o > 4}
Lz — {(I_Tz.b'i?'ﬁ (:'.Zm | 70, 2 U}

a) Show that each of these languages is context-free by giving grammars for
each.

'h) Is Ly N Ly a CEL? Justify vour answer,

! Exercise 7.3.3: Show that the CFL’s are not closed under the following op-
erations:

*a) min, as defined in Exercise 4.2.6(a).
b} mazx. s defined in Exercise 4.2.6(b).
¢) half, as defined in Exercise 4.2.8.

d} alt, as defined in Exercise 4.2.7.

Exercise 7.3.4: The shuffle of two strings w and # is the set of all strings that

one can get by interleaving the positions of w and r in any way. More precisely,
shuffle(w, 1) is the set of strings z such that

1. Each position of z can be assigned to w or . but not hoth,

