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I. A QUESTION

Now that we have defined deterministic finite automata, we can begin to delve into the properties of these devilish
little machines. Lets begin this delving by looking at a very simple question. Suppose that you have the following
two DFAs:
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FIG. 1: Machine M1
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FIG. 2: Machine M2

A little bit of thought will show that the language of machine M1 is

A = L(M1) = {w|w has an odd number of 1s} (1)

and the language of machine M2 is

B = L(M2) = {w|w is the empty string ε or w ends in 0} (2)

Since A and B are both generated by a finite automata, these are both regular languages. But now suppose that we
want to produce a finite automata that accepts strings which begin with elements from A and end with those from
B. Is it possible to construct a finite automata which does this? I’ll let you ponder this question, as it isn’t as easy
as you might think at first sight. Indeed it will lead us down an interesting new path in the world of finite automata:
nondeterministic finite automata. But more on that soon.

II. REGULAR OPERATIONS

Okay so it seems that the question we are asking is something like, given some languages, what new languages can
we construct from these languages which are regular languages (can be generated by a DFA.) We will study a set of
operations called regular operations. Why are they called that? You’ll see in a second (patience young grasshopper.)
Okay what follows are a list of definitions for some regular operations. These are not all regular operations, by the
way, but an important class of such operations.

Let A and B be languages (sets of strings.) Then we define the union of A and B as the new language

A ∪B = {w|w ∈ A or w ∈ B} (3)

Thus the union of A and B is a new language which includes all of the strings which are in A and all of the strings
which are in B.
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Similarly we can define the intersection of A and B as the new langage

A ∩B = {w|w ∈ A and w ∈ B} (4)

Thus the intersection of A and B is a new language which includes all of the strings that are in both A and B.
We define the concatenation of A and B as the new language

A ◦B = {wv|w ∈ A and v ∈ B} (5)

In other words, the concatenation of the two languages A and B is made up of strings which come first from w and
then from v. Note that A ◦B is not equal to B ◦A (the ◦ operator is not commutative.)

We define the star of a language A as the new language

A∗ = {x1x2 . . . xk|k ≥ 0 and each xi ∈ A} (6)

Okay having defined these operations are languages, we can now ask an interesting question. Do these operations
preserve the concept of a regular language? In other words if the languages used in these definitions can be generated
by a DFA, can the the newly defined construction using the above operations also be generated by a DFA?

III. THE UNION OF REGULAR LANGUAGES IS A REGULAR LANGUAGE

So let’s tackle the first of these questions. Let’s ask whether the union of two regular languages is regular. We will
show that indeed, the union of two regular languages is regular. How will we do this? We will do this by construction.

Let A and B be regular languages. Because they are regular we know that there is some DFA which recognizes
these languages. Call these M1 and M2, such that L(M1) = A and L(M2) = B. We will now show how to construct a
new DFA M such that L(M) = A∪B. This will prove that the union of two regular languages is a regular language.

So how do we construct M from M1 and M2? Think about this for a bit, and then read on.
We will construct M by simulating the action of M1 and M2, at the same time. Intuitively the picture is as follows.

To simulate both M1 and M2 at the same time, we need to keep track of which of the states each of these DFA is
in, and then update this state as each incoming character is read. At the end of the computation, we should then
accept if either of the two machines is in the accept state. Okay, so this is the intuition, but the method we have
just described isn’t obviously a DFA. For example, we now seem to be keeping track of two states in our DFA. But if
machine M1 has states Q1 and machine M2 has states Q2, then in order to keep track for the states of two machines,
we can do this by keeping track of an ordered pair of elements (q1, q2), where q1 ∈ Q1 and q2 ∈ Q2. In other words,
keeping track of two DFAs is equivalent to keeping track of a DFA whose state space is Q1 ×Q2.

This leads us to the formal construction of M :
Let M1 recognize A where M1 = (Q1,Σ1, δ1, q1, F1) and let M2 recognize B where M2 = (Q2,Σ2, δ2, q2, F2). For

simplicity, lets assume that Σ1 = Σ2. We will now show how to construct a DFA M which recognizes A ∪ B. Then
our new M has the following 5-tuple M = (Q,Σ, δ, q0, F ):

1. Q = Q1 ×Q2. In other words Q = {(r1, r2)|r1 ∈ Q1 and r2 ∈ Q2}.

2. Σ = Σ1 = Σ2. Here we have assumed that the alphabets of both machines are the same. If the machines have
different alphabets, then we can still construct an M , but we will ignore this case for now.

3. The transition function, δ is constructed as follows. Recall that it will be a function of the form δ : Q×Σ→ Q,
which for our definitions is δ : (Q1 × Q2) × Σ → (Q1 × Q2). Intuitively the transition function should update
each part of Q1 ×Q2 separately. We can do this by setting

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)) (7)

Thus the transition function gets as input the two states and the next letter in the string, and outputs the next
state of each of the two machines.

4. The start state starts M in the initial states of the two machines: q0 = (q1, q2).

5. F = (F1 ×Q2) ∪ (Q1 × F2). This expression says that the accept states are made up of states where one of the
two machines is in the

Now informally, we can see how this construction of M leads to a DFA which accepts a string when it is in A or B.
A formal proof of this, however, would need to apply the definition of how a DFA computes to show that M acts as
desired.

Note also that we can easily modify this proof to show that the intersection of two regular languages is regular.
All we need to do is modify the accept states. Instead of what we have above, we would replace the accept states by
F = F1 × F2. Then the machine will accept only when both are accepting, which is the definition of the intersection.
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IV. AN EXAMPLE

Let’s see an example of the union construction for the automata given in Figures 1 and 2. Since both of these
automata have only two states q1 and q2, we know that the machine which accepts the union of the two languages
will be Q = {(q1, q1), (q1, q2), (q2, q1), (q2, q2)}. Given this insight we can then easily construct the state diagram by
looking at the action M1 and M2 would take on taking as input different elements of the alphabet.
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FIG. 3: Machine M


