322 Midterm Review

- Formal Languages
 - Alphabet (Σ)
 - String (Σ^*)
 - Length (|x|)
 - Empty String (ϵ)
 - Empty Language (∅)

- Language/String Operations
 - "Regular" Operations:
 - Union (\cup)
 - Concatenation (•)
 - (Kleene) Star (*)
 - Other:
 - Intersection
 - Complement
 - Reversal
 - ...

Finite Defns of Infinite Languages

- English, mathematical
- DFAs
 - States
 - Start states
 - Accept states
 - Transitions (δ function)
 - M accepts w $\in \Sigma^*$
 - M recognizes $L \subseteq \Sigma^*$

- Nondeterminism
- NFAs
 - Transitions (δ relation)
 - Missing out-edges
 - ε-moves
 - Multiple out-edges
 - − N accepts w \in Σ*
 - N recognizes $L \subseteq \Sigma^*$
- Regular Expressions
 - \varnothing , a $\in \Sigma$, \cup , \bullet , *, ()
- GNFAs

Key Results, Constructions, Methods

- L is regular iff it is:
 - Recognized by a DFA
 - Recognized by a NFA
 - Recognized by a GNFA
 - Defined by a Regular Expr

Proofs:

 $GNFA \rightarrow Reg Expr$

(Kleene/Floyd/Warshall: R_{ij} R_{ji}* R_{jk})

Reg Expr → NFA

(join NFAs w/ ε-moves)

NFA \rightarrow DFA

(subset construction)

- The class of regular languages is closed under:
 - Regular ops: union, concatenation, star
 - Also: intersection,
 complementation,
 (& reversal, prefix,
 no-prefix, ...)
- NOT closed under \subseteq , \supseteq
- Also: Cross-product construction (union, ...)

Non-Regular Languages

 Key idea: once M is in some state q, it doesn't remember how it got there.

> E.g. "hybrids": if $xy \in L(M)$ and x, x' both go to q, then x'y $\in L(M)$ too.

E.g. "loops": if $xyz \in L(M)$ and x, xy both go to q, then $xy^iz \in L(M)$ for all $i \ge 0$.

- Cor: Pumping Lemma
 - Important examples: $L_1 = \{ a^n b^n \mid n > 0 \}$ $L_2 = \{ w \mid \#_a(w) = \#_b(w) \}$ $L_3 = \{ ww \mid w \in \Sigma^* \}$ $L_4 = \{ ww^R \mid w \in \Sigma^* \}$ $L_5 = \{ balanced parens \}$
- Also: closure under ∩, complementation sometimes useful:

 $- L_1 = L_2 \cap a^*b^*$

• PS: don't say "Irregular"

Applications

- "globbing"
 - Ipr *.txt
- pattern-match searching:
 - grep "Ruzzo.*terrific" *.txt

- Compilers:
 - Id ::= letter (letter|digit)*
 - Int ::= digit digit*
 - Float ::= d d* . d* (ε | E d d*)