PL: if A is regular, then there exists p that, for any s in A and $|s|>p$, then there exists a partition $s=x y z$, satisfying condition:

1. for each $i>=0, x^{i} z$ in A
2. $|y|>0$
3. $|x y|<p$

PL => all regular languages are infinite
F All finite languages are regular
Every DFA contains a loop
T DFA runs on input of arbitrary length, there must be a loop
Every DFA contains a loop from which a final state is reachable
F excludes DFAs for finite languages.
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n}>=0\right\}$ is not regular
T pumping lemma
Any subset of that L is not regular
F empty subset
An infinite subset of that L is not regular
T pumping lemma
if that L is a subset of L^{\prime}, then L^{\prime} is not regular
F $\quad \sum^{*}$
if L1 union L2 is regular then so are L1 and L2
F L1 union L2 $=\sum^{*}$
if L1 intersection L 2 is regular then so are L1 and L2
F L1 and L2 disjoint
If L1 and L2 are regular, then L1 union L2 is regular

T closure property

If L1 and L2 are regular, then L1 intersection L 2 is regular
T closure property

Application of Pumping Lemma.
$\Sigma=\{0,1,+,=\}$
$\operatorname{ADD}=\{a=b+c \mid a, b, c$ are binary integers and a is sum of b and $c\}$.
Solution:
$\mathrm{a}=10^{\mathrm{p}}, \mathrm{b}=1^{\mathrm{p}}, \mathrm{c}=1$
$|x y|<p$ and $|y|>1=>x=\varepsilon \quad y=10^{i} \quad$ or $\quad x=10^{i} \quad y=0^{j}$

Proof by closure properties of regular expression
If L intersects L^{\prime} (L^{\prime} is regular) is not regular, then L is not regular.
$\Sigma=\{0,1\}, \quad L=\{$ the number of 0 's and the number of 1 's are equal $\}$
Lintersects $L^{\prime}=\left\{0^{i} 1^{j} \mid i, j>=0\right\} \quad=\left\{0^{i} 1^{i} \mid i>=0\right\}$
L^{\prime} is regular, and L intersects L^{\prime} is not regular $=>\mathrm{L}$ is not regular.

Many elements of programming languages are regular, e.g.
Identifiers: the first being a letter of the alphabet or an underline, and the remaining being any letter of the alphabet, any numeric digit, or the underline int/float keywords.

A C program is not regular. main() $\{$ return (...(0)...);\}

