
PL: if A is regular, then there exists p that, for any s in A and |s| > p, then 

there exists a partition s=xyz, satisfying condition: 

1. for each i>=0, xyiz in A 

2. |y| > 0  

3. |xy| < p 

 

PL => all regular languages are infinite 

F  All finite languages are regular 

Every DFA contains a loop 

T  DFA runs on input of arbitrary length, there must be a loop 

Every DFA contains a loop from which a final state is reachable 

F  excludes DFAs for finite languages. 

L = {anbn | n>=0} is not regular 

T  pumping lemma 

Any subset of that L is not regular 

F  empty subset 

An infinite subset of that L is not regular 

T  pumping lemma 

if that L is a subset of L', then L' is not regular 

F  ∑* 

if L1 union L2 is regular then so are L1 and L2 

F  L1 union L2 =∑*  



if L1 intersection L2 is regular then so are L1 and L2 

F  L1 and L2 disjoint 

If L1 and L2 are regular, then L1 union L2 is regular 

T  closure property 

If L1 and L2 are regular, then L1 intersection L2 is regular 

T  closure property 

 

Application of Pumping Lemma.  

Σ={0,1,+,=} 

ADD = {a=b+c | a,b,c are binary integers and a is sum of b and c}.   

Solution: 

a=10 p, b=1p, c= 1 

|xy| < p and |y| > 1=> x=  y=10i  or  x=10i  y = 0j  

 

 

Proof by closure properties of regular expression 

If L intersects L’ (L’ is regular) is not regular, then L is not regular. 

Σ={0,1},  L= {the number of 0’s and the number of 1’s are equal} 

L intersects L’={0i1j| i,j >= 0}  = {0i1i| i >= 0}   

L’ is regular, and L intersects L’ is not regular => L is not regular. 

 

 



Many elements of programming languages are regular, e.g. 

Identifiers: the first being a letter of the alphabet or an underline, 

and the remaining being any letter of the alphabet, any numeric 

digit, or the underline 

int/float  

keywords. 

 

A C program is not regular.  

main(){return  (…(0)…) ;} 

 

 

 

 

 

 


