
PL: if A is regular, then there exists p that, for any s in A and |s| > p, then

there exists a partition s=xyz, satisfying condition:

1. for each i>=0, xyiz in A

2. |y| > 0

3. |xy| < p

PL => all regular languages are infinite

F All finite languages are regular

Every DFA contains a loop

T DFA runs on input of arbitrary length, there must be a loop

Every DFA contains a loop from which a final state is reachable

F excludes DFAs for finite languages.

L = {anbn | n>=0} is not regular

T pumping lemma

Any subset of that L is not regular

F empty subset

An infinite subset of that L is not regular

T pumping lemma

if that L is a subset of L', then L' is not regular

F ∑*

if L1 union L2 is regular then so are L1 and L2

F L1 union L2 =∑*

if L1 intersection L2 is regular then so are L1 and L2

F L1 and L2 disjoint

If L1 and L2 are regular, then L1 union L2 is regular

T closure property

If L1 and L2 are regular, then L1 intersection L2 is regular

T closure property

Application of Pumping Lemma.

Σ={0,1,+,=}

ADD = {a=b+c | a,b,c are binary integers and a is sum of b and c}.

Solution:

a=10 p, b=1p, c= 1

|xy| < p and |y| > 1=> x= y=10i or x=10i y = 0j

Proof by closure properties of regular expression

If L intersects L’ (L’ is regular) is not regular, then L is not regular.

Σ={0,1}, L= {the number of 0’s and the number of 1’s are equal}

L intersects L’={0i1j| i,j >= 0} = {0i1i| i >= 0}

L’ is regular, and L intersects L’ is not regular => L is not regular.

Many elements of programming languages are regular, e.g.

Identifiers: the first being a letter of the alphabet or an underline,

and the remaining being any letter of the alphabet, any numeric

digit, or the underline

int/float

keywords.

A C program is not regular.

main(){return (…(0)…) ;}

