
CSE 322

Exam Reviews

Basic Concepts

• Formal Languages
– Alphabet (Σ)
– String (Σ*)
– Length (|x|)
– Empty String (ε)
– Empty Language (∅)

• Language/String
Operations
– “Regular” Operations:

• Union (∪)
• Concatenation (•)
• (Kleene) Star (*)

– Other:
• Intersection
• Complement
• Reversal
• ...

Finite Defns of Infinite Languages

• English, mathematical
• DFAs

– States
– Start states
– Accept states
– Transitions (δ function)
– M accepts w ∈Σ*
– M recognizes L ⊆ Σ*

• Nondeterminism
• NFAs

– Transitions (δ relation)
• Missing out-edges
• ε-moves

• Multiple out-edges
– N accepts w ∈Σ*
– N recognizes L ⊆ Σ*

• Regular Expressions
– ∅ , a∈Σ, ∪, •, * , ()

• GNFAs

Key Results, Constructions, Methods

• L is regular iff it is:
– Recognized by a DFA
– Recognized by a NFA
– Recognized by a GNFA
– Defined by a Regular Expr

Proofs:
GNFA → Reg Expr

(Kleene/Floyd/Warshall: Rij Rjj* Rjk)

Reg Expr → NFA
(join NFAs w/ ε-moves)

NFA → DFA
(subset construction)

• The class of regular
languages is closed
under:
– Regular ops: union,

concatenation, star
– Also: intersection,

complementation,
(& reversal, prefix,
no-prefix, …)

• NOT closed under ⊆, ⊇

• Also: Cross-product
construction (union, …)

Non-Regular Languages

• Key idea: once M is in
some state q, it doesn’t
remember how it got
there.
E.g. “hybrids”:

if xy ∈ L(M) and
x, x’ both go to q, then
x’y ∈ L(M) too.

E.g. “loops”:
if xyz ∈ L(M) and
x, xy both go to q, then
xyiz ∈ L(M) for all i ≥ 0.

• Cor: Pumping Lemma
• Important examples:

L1 = { anbn | n >0 }
L2 = { w | #a(w) = #b(w) }
L3 = { ww | w∈Σ* }
L4 = { wwR | w∈Σ* }
L5 = { balanced parens }

• Also: closure under ∩,
complementation
sometimes useful:
– L1 = L2 ∩ a*b*

• PS: don’t say “Irregular”

Applications

• “globbing”
– lpr *.txt

• pattern-match
searching:
– grep “Ruzzo.*terrific” *.txt

• Compilers:
– Id ::= letter (letter|digit)*
– Int ::= digit digit*
– Float ::=

d d* . d* (ε | E d d*)
– (but not, e.g. expressions

with nested, balanced
parens, or variable names
matched to declarations)

• Finite state models of
circuits, control systems,
network protocols, API’s,
etc., etc.

Context-Free Grammars

• Terminals, Variables/Non-Terminals
• Start Symbol S
• Rules →
• Derivations ⇒, ⇒*
• Left/right-most derivations
• Derivation trees/parse trees
• Ambiguity, Inherent ambiguity

• A key feature: recursion/nesting/matching, e.g.

S →(S)S | ε

Pushdown Automata

• States, Start state, Final states, stack
• Terminals (Σ), Stack alphabet (Γ)
• Configurations, Moves, |--, |--*, push/pop

Main Results

• Closure: union, dot, *, (Reversal)
– every regular language is CFL

• Non-Closure: Intersection, complementation
• Equivalence of CFG & PDA

– CFG ⊆ PDA :
top-down(match/expand), bottom-up (shift/reduce)

– PDA ⊆ CFG: Apq

• Pumping Lemma & non-CFL’s
• Deterministic PDA != Nondeterministic PDA

Important Examples

• Some Context-Free Languages:
– { anbn | n > 0 }
– { w | #a(w) = #b(w) }
– { wwR | w ∈ {a,b}* }
– balanced parentheses
– "C", Java, etc.

• Some Non-Context-Free Languages:
– { anbncn | n > 0 }
– { w | #a(w) = #b(w) = #c(w) }
– { ww | w ∈ {a,b}* }
– "C", Java, etc.

Curiously, their
complements
are CFL’s

Applications

• Programming languages and compilers
• Parsing other complex input languages

– html, sql, …
• Natural language processing/

Computational linguistics
– Requires handling ambiguous grammars

• Computational biology (RNA)

The big picture

Ability to specifiy and reason about abstract
formal models of computational systems is an
important life skill. Practice it.

