CSE 322

Exam Reviews

Basic Concepts

- Formal Languages
 - Alphabet (Σ)
 - String (Σ^*)
 - Length (|x|)
 - Empty String (ϵ)
 - Empty Language (∅)

- Language/String Operations
 - "Regular" Operations:
 - Union (\cup)
 - Concatenation (•)
 - (Kleene) Star (*)
 - Other:
 - Intersection
 - Complement
 - Reversal
 - ...

Finite Defns of Infinite Languages

- English, mathematical
- DFAs
 - States
 - Start states
 - Accept states
 - Transitions (δ function)
 - M accepts w $\in \Sigma^*$
 - M recognizes $L \subseteq \Sigma^*$

- Nondeterminism
- NFAs
 - Transitions (δ relation)
 - Missing out-edges
 - ε-moves
 - Multiple out-edges
 - − N accepts w \in Σ*
 - N recognizes $L \subseteq \Sigma^*$
- Regular Expressions
 - \varnothing , a $\in \Sigma$, \cup , \bullet , * , ()
- GNFAs

Key Results, Constructions, Methods

- L is regular iff it is:
 - Recognized by a DFA
 - Recognized by a NFA
 - Recognized by a GNFA
 - Defined by a Regular Expr

Proofs:

 $GNFA \rightarrow Reg Expr$

(Kleene/Floyd/Warshall: R_{ij} R_{ji}* R_{jk})

 $\mathsf{Reg}\;\mathsf{Expr}\to\mathsf{NFA}$

(join NFAs w/ ε-moves)

(subset construction)

NFA \rightarrow DFA

 The class of regular languages is closed under:

- Regular ops: union, concatenation, star
- Also: intersection,
 complementation,
 (& reversal, prefix,
 no-prefix, ...)
- NOT closed under \subseteq , \supseteq
- Also: Cross-product construction (union, ...)

Non-Regular Languages

 Key idea: once M is in some state q, it doesn't remember how it got there.

> E.g. "hybrids": if $xy \in L(M)$ and x, x' both go to q, then x'y $\in L(M)$ too.

E.g. "loops": if $xyz \in L(M)$ and x, xy both go to q, then $xy^iz \in L(M)$ for all $i \ge 0$.

- Cor: Pumping Lemma
 - Important examples: $L_1 = \{ a^n b^n \mid n > 0 \}$ $L_2 = \{ w \mid \#_a(w) = \#_b(w) \}$ $L_3 = \{ ww \mid w \in \Sigma^* \}$ $L_4 = \{ ww^R \mid w \in \Sigma^* \}$ $L_5 = \{ balanced parens \}$
- Also: closure under ∩, complementation sometimes useful:

 $- L_1 = L_2 \cap a^*b^*$

• PS: don't say "Irregular"

Applications

- "globbing"
 - Ipr *.txt
- pattern-match searching:
 - grep "Ruzzo.*terrific" *.txt

- Compilers:
 - Id ::= letter (letter|digit)*
 - Int ::= digit digit*
 - Float ::= d d* . d* (ε | E d d*)
 - (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API's, etc., etc.

Context-Free Grammars

- Terminals, Variables/Non-Terminals
- Start Symbol S
- Rules →
- Derivations \Rightarrow , \Rightarrow^*
- Left/right-most derivations
- Derivation trees/parse trees
- Ambiguity, Inherent ambiguity
- A key feature: recursion/nesting/matching, e.g.

 $S \rightarrow (S)S \mid \varepsilon$

Pushdown Automata

- States, Start state, Final states, stack
- Terminals (Σ), Stack alphabet (Γ)
- Configurations, Moves, |--, |--*, push/pop

Main Results

- Closure: union, dot, *, (Reversal)
 - every regular language is CFL
- Non-Closure: Intersection, complementation
- Equivalence of CFG & PDA
 - $CFG \subseteq PDA :$
 - top-down(match/expand), bottom-up (shift/reduce)
 - $PDA \subseteq CFG: A_{pq}$
- Pumping Lemma & non-CFL's
- Deterministic PDA != Nondeterministic PDA

Important Examples

- Some Context-Free Languages:
 - $\{ a^n b^n | n > 0 \}$
 - $\{ w \mid \#_{a}(w) = \#_{b}(w) \}$
 - $\{ ww^{R} \mid w \in \{a,b\}^{*} \}$
 - balanced parentheses
 - "C", Java, etc.
- Some Non-Context-Free Languages:
 - $\{ a^n b^n c^n \mid n > 0 \}$ $- \{ w \mid \#_{a}(w) = \#_{b}(w) = \#_{c}(w) \}$ $- \{ ww \mid w \in \{a,b\}^{*} \}$ complements are CFL's
 - $\{ ww | w \in \{a,b\}^* \}$

Curiously, their

- "C", Java, etc.

Applications

- Programming languages and compilers
- Parsing other complex input languages
 html, sql, ...
- Natural language processing/ Computational linguistics
 - Requires handling ambiguous grammars
- Computational biology (RNA)

The big picture

Ability to specify and reason about abstract formal models of computational systems is an important life skill. Practice it.