

- English, mathematical - DFAs - States - Start states - Accept states - Transitions (δ function) - M accepts $\mathrm{w} \in \Sigma^{*}$ - M recognizes $L \subseteq \Sigma^{*}$	- Nondeterminism - NFAs - Transitions (ס relation) - Missing out-edges - ε-moves - Multiple out-edges - N accepts $w \in \Sigma^{*}$ - N recognizes $L \subseteq \Sigma^{*}$ - Regular Expressions $-\varnothing, a \in \Sigma, \cup, \cdot{ }^{*},()$ - GNFAs

Key Results, Constructions, Methods

- The class of regular languages is closed under:
- Regular ops: union, concatenation, star
- Also: intersection, complementation, (\& reversal prefix, no-prefix, ...)
- NOT closed under \subseteq, \supseteq
- Also: Cross-product construction (union, ...)

Non-Regular Languages

- Cor: Pumping Lemma
- Important examples:
$L_{1}=\left\{a^{n} b^{n} \mid n>0\right\}$
$L_{2}=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$
$L_{3}=\left\{w w \mid w \in \Sigma^{*}\right\}$
$L_{4}=\left\{w w^{R} \mid w \in \Sigma^{*}\right\}$
$L_{5}=\{$ balanced parens $\}$
- Also: closure under \cap, complementation sometimes useful:
$-L_{1}=L_{2} \cap a^{*} b^{*}$ PS: don't say "Irregular"

Applications

- "globbing"
- Ipr *.txt
- pattern-match searching:
- grep "Ruzzo.*terrific" *.txt
- Compilers:
- Id ::= letter (letter|digit)*
- Int ::= digit digit ${ }^{*}$
- Float ::= $d^{*} d^{*} \cdot d^{*}\left(\varepsilon \mid E d d^{*}\right)$
- (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API's, etc., etc

Context-Free Grammars

- Terminals, Variables/Non-Terminals
- Start Symbol S
- Rules \rightarrow
- Derivations $\Rightarrow, \Rightarrow^{*}$
- Left/right-most derivations
- Derivation trees/parse trees
- Ambiguity, Inherent ambiguity
- A key feature: recursion/nesting/matching, e.g.

$$
S \rightarrow(S) S \mid \varepsilon
$$

Pushdown Automata

- States, Start state, Final states, stack
- Terminals (Σ), Stack alphabet (Γ)
- Configurations, Moves, |--, |--*, push/pop

Main Results

- Closure: union, dot, *, (Reversal)
- every regular language is CFL
- Non-Closure: Intersection, complementation
- Equivalence of CFG \& PDA
- CFG \subseteq PDA :
top-down(match/expand), bottom-up (shift/reduce)
$-P D A \subseteq C F G: A_{p q}$
- Pumping Lemma \& non-CFL's
- Deterministic PDA != Nondeterministic PDA

Applications

- Programming languages and compilers
- Parsing other complex input languages - html, sql, ..
- Natural language processing/ Computational linguistics
- Requires handling ambiguous grammars
- Computational biology (RNA)

Important Examples

- Some Context-Free Languages:
$-\left\{a^{n} b^{n} \mid n>0\right\}$
$-\left\{w \mid \#_{\mathrm{a}}(\mathrm{w})=\#_{\mathrm{b}}(\mathrm{w})\right\}$
$-\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
- balanced parentheses
- "C", Java, etc.
- Some Non-Context-Free Languages:
$-\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$
$-\left\{\mathrm{w} \mid \#_{\mathrm{a}}(\mathrm{w})=\#_{\mathrm{b}}(\mathrm{w})=\#_{\mathrm{c}}(\mathrm{w})\right\}$
Curiously, their
complements
are CFL's
$-\{w w \mid w \in\{a, b\}$
- "C", Java, etc.

