
CSE 322
Intro to Formal Models in CS

Homework #7
Due: Wednesday 5 Dec 2007

W. L. Ruzzo 25 Nov 07

A lexical analyzer, lexer or scanner for short, is the main input routine of many programs. A lexer translates
a stream of characters into a stream of tokens, groups of characters at a somewhat higher logical level. For ex-
ample, the lexer in a C compiler might report that the 25 input characters halfagadro += 6.02e23 /2;
constitute 6 tokens: an identifier halfagadro , two operators += and / , a double constant 6.02e23 , an
int constant 2 , and the punctuation ; . The 3 whitespace characters are ignored.

A parser analyses a stream of tokens checking its validity with respect to a context-free grammar, and
creating a corresponding structured description (parse tree). Continuing the above example, a parser might
conclude that the above token sequence is a valid assignment statement consisting of an identifier, an as-
signment operator, and an expression.

Regular expressions can conveniently describe the lexical units required for many application. The
unix utility lex and derivatives will semi-automatically construct a lexer from regular expressions. Yacc and
derivatives are companion utilities that convert a context-free grammar into a parser. To be slightly more
precise, lex & yacc convert source files into C (C++, Java, ...) programs incorporating tables built from the
regular expressions and grammar, plus some library modules and various snippets of code that you provide
with each regular expression and grammar rule. The code is then compiled, linked, and run.

In this assignment you’ll use lex and yacc (or equivalents) to build a formatter for html. Your program
will produce formatted output reflecting the basic html commands: things like left- and center-aligned filled
paragraphs, line breaks, unnumbered lists and headings. (You will be generating plain ASCII output, so you
won’t be doing font/size changes or other fancy stuff.) I have provided most of the formatting code, so you
can concentrate on the lex/yacc end. Maybe we shouldn’t call it “html”; a better view is that you’ll actually
be processsing Ruzzo’s Awesome Text Markup Language. The following summarizes ratml syntax to be
used in this assignment.

At the lexical level, a ratml file contains text, tags, and escapes. Escapes are the simplest: &,
<, and > in the midst of text specify the ampersand, less than, and greater than characters, &, <, and
>, respectively. Unlike the rest of ratml, escapes are case sensitive; e.g., you must use &, not &
(whereas <CENTER> and <CeNTeR> are equivalent, e.g.).

Tags consist of certain text enclosed in < and > brackets. Tags control formatting. We distinguish two
types of tags.

Comment tags begin with the sequence <!-- and end with the nearest subsequent -->. The enclosed
string may include newline characters.

Simple tags look like <xyz> or </xyz>, where the tag name xyz is a letter, followed by zero or more
letters or digits, and many be upper case, lower case, or mixed. No whitespace is allowed within < >.

Finally, text is everything else—everything in the file that isn’t either part of a tag or escape. Text is
broken into “words” by escapes, tags, or whitespace characters (space, tab, newline). The whitespace is

1

neither a token, nor part of one. (For our purposes, a word is a consecutive sequence of non-whitespace,
non-escape, non-tag characters. E.g. Yo!&<P>Y o! contains 5 tokens: Yo!, &, <P>, Y, and
o!.) Note that an ampersand not followed by one of the recognized escape sequences, or a < bracket not
followed by a tag name, should be returned as text tokens.

That’s it for the lex level: successive calls to yylex() (the lexer’s entry point) should return successive
tokens of the input ratml file, until EOF.

For the yacc part, here’s a brief description of ratml, and what the output should look like.

By the phrase “X is enclosed in a Y wrapper”, I mean the source looks like <Y>X</Y>.

Each ratml document is enclosed in the HTML wrapper, and consists of a header section (enclosed in a
HEADwrapper), and a body section enclosed in a BODYwrapper. The header just consists of a TITLEwrap-
per around a text string that is the document title (the string shown in the browser’s title bar, for example).
You should print the title on a line (or lines) by itself, centered.

The body contains a sequence of words, ratml escapes, paragraph separators <P>, headings, and un-
ordered lists. These may be nested. Escapes should be rendered as the indicated symbol, i.e., & <
> should print as &, <, >, respectively. Successive words/escapes should be printed as filled paragraphs,
with one space between each word, according to the prevailing left margin, and prevailing alignment (left,
center). Maximum line width is 80 characters. <P> should end a paragraph and leave a blank line. (<P> is
not a wrapper; there’s no </P>.) The line break tag
 should end the current line, but not insert a blank
line. Text in a heading wrapper (H1, H2, ..., H6) should be printed on a line (or lines) by itself, with a blank
line above and below, and with lower case letters converted to upper case, with the prevailing alignment.
The CENTER wrapper changes the prevailing alignment within it be centered, instead of left-justified.

The unordered list wrapper UL causes the text within it to be indented 4 spaces farther to the right (i.e.,
the prevailing left margin is increased by 4). Within the list, list item tags cause a line break, and place
a * two spaces to the left of the prevailing left margin, to produce a “bulleted list”. Lists may be nested.

Unrecognized ratml tags should just be treated as plain text.

At the end of any wrapper, the prevailing rendering parameters (margin, alignment, and upper-case)
should revert to their values as set before the start of the wrapper. E.g.,

<H1>Head 1</H1>
item 1
item 2<CENTER>more item 2 (centered) </CENTER> Yet more item 2.
item 3

becomes something like:

HEAD 1

* item 1

* item 2
more item 2 (centered)

Yet more item 2 (not centered).

* item 3

As mentioned earlier, most of the formatting code is provided. It walks through a tree structure reflecting
the nested list of page elements, and prints them appropriately. So your job is really to build a lexer to break

2

the input file into appropriate tokens and build a grammar allowing you to parse the resulting token stream
and to build the corresponding tree. Format of the tree is documented in the skeleton file provided to
you. Note that for full credit, your solution must not generate lex/yacc errors. In particular, clean up all
“shift/reduce” and “reduce/reduce” errors reported by yacc. These are usually, but not always, symptoms of
grammar ambiguity.

Where to start: the course web page links to a .zip file with Makefile, lex/yacc examples and skeletal
lex/yacc programs that illustrate the communication between lexer and parser, as well as providing some
convenient utility routines for this assignment and the core of the formatting code.

Please, name your files ratml.l, ratml.y, and include your name and student number in com-
ments in your program, as indicated in the skeleton files. You may develop on any convenient machine. To
turn in your files, use “make clean” or equivalent to delete object files etc. that we can rebuild, bundle the
rest into a tar or zip archive, then follow the link on the course web to upload it.

Extra Credit: Try to do some or all of the following. Get the basic assignment working first, and save
a copy, before starting any extra credit.

Complex tags: are like simple tags, but have parameters between the tag name and the closing > bracket,
e.g., <p size=15 font="diamond<>jubilee">. Parameters can be any set of keyword=value
pairs, where values other than simple integers should be quoted. Parameters are largely irrelevant for
our purposes, except that they complicate locating the end of the tag. The tag ends with the nearest >
not enclosed in quotes ("); it may be on a different line from the start of the tag.

For purposes of showing that your solution works, have your parser (not lexer) print info about the
tag and its parameters whenever you first do a reduction involving that tag (so as not to mess up your
pretty formatting). Including an input line number in this printout would be nice.

Hint: look at “start states” in the lex documentation.

Long Comments: Most lex implementations have relatively small buffers for the tokens it processes (a few
hundred characters). This is generally fine, except for comments, which can run to tens of thousands
of characters. Change your handling of comments so the body of the comment isn’t collected as a
potential token. (Hint: start states again.)

Ordered Lists: Add and tags, perhaps with <OL START=?> (for the whole list) and <LI VALUE=?>
(this and subsequent items) parameters. Add corresponding formatting code, and make your grammar
enforce obvious rukes like not ending a with an .

Other: If there are other things you would like to try, ask. Parts involving the lex/yacc rules are of more
interest than adding straight C code.

When you turn in your assignment, put the basic solution in one subdirectory and your extra credit
solution in another, including sources, a Makefile, etc. Include a README-EC describing what you’ve
done, and one or more test files to show off its capabilities. Don’t include .o or other generated files. Bundle
all in a zip or tar archive and turn it in all at once.

3

