CSE 322
Intro to Formal Models in CS
Homework \#4
Due: Friday 26 Oct 07
20 Oct 07

W. L. Ruzzo

Midterm: Friday, Nov 2.

Modified Late Policy for this assignment: It will not be accepted later than 5:00PM Monday, 10/29.
Text book problems below are on pages 88-91.

1. Let x and y be strings and let L be any language. We say that x and y are equivalent with respect to L if for every string $z \in \Sigma^{*}$ either $x z$ and $y z$ are both in L, or neither is. [So, x and y are not equivalent if and only if there is some string z such that exactly one of $x z, y z$ is in L. Such a z is said to separate x from y with respect to L.] Suppose L is accepted by DFA M.
(a) Prove: if M is in the same state after reading x as it is after reading y, then x and y are equivalent with respect to L.
(b) Give an example showing that the converse of statement (1a) above is false.
(c) Prove: if there are k strings $\left\{x_{1}, \ldots, x_{k}\right\}$ no two of which are equivalent with respect to L, then M has at least k states. [Hint: pigeon hole principle.]
(d) In lecture I sketched a $2 k+2$ state DFA accepting the language $L_{k}=\left\{a^{n} b^{n} \mid 1 \leq n \leq k\right\}$. Prove that any DFA accepting L_{2} must have at least 6 states.
(e) [Extra Credit:] Prove that L_{k} requires at least $2 k+2$ states for each $k \geq 1$.
(f) [Extra Credit:] Extend the idea in part (c) to give another approach to proving that a given language is not regular. Use it to prove that $L=\left\{a^{n} b^{n} \mid 1 \leq n\right\}$ is not regular.
2. 1.29 b (1st ed.: not present)
3. 1.30 (1st ed.: 1.18)
4. Let $\Sigma=\{a, b\}$.
(a) Prove that $G=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$ is not regular.
(b) Prove that $F=\left\{w \in \Sigma^{*} \mid w\right.$ is not a palindrome $\}$ is not regular. [Hint: see exercise 1.14 (1st ed.: 1.10).]
5. 1.54 (1st ed.: not present)
