CSE 322 Winter 2006

Homework Assignment \# 6

Due Date: Friday, March 3 (at the beginning of class)

1. (25 points; 20 for part a and 5 for part b)
a. Convert the following CFG G over $\sum=\{\mathrm{a}, \mathrm{b}\}$ to an equivalent PDA using the procedure discussed in class [see Lemma 2.21 in the text (Lemma 2.13 in the $1^{\text {st }}$ edition)]:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bY}| \mathrm{Ya} \\
& \mathrm{Y} \rightarrow \mathrm{bY}|\mathrm{aY}| \varepsilon
\end{aligned}
$$

Show all states of your PDA.
b. Give a simple description of $L(G)$ in English.
2. (25 points; 10 for part a and 15 for part b) For any two regular languages A and B , define the language $\mathrm{L}=\{x y \mid x \in \mathrm{~A}, y \in \mathrm{~B}$, and $|x|=|y|\}$.
a. Show that L need not be regular by giving a counterexample.
b. Show that L is a context free language by giving a detailed but informal description of a PDA that accepts L. See Example 2.18 in the textbook (2.11 in the $1^{\text {st }}$ ed.) for the level of detail required for the description. You do not need to draw the state diagram. (Hint: Make use of DFAs for A and B in constructing your PDA).
3. (30 points; 15 each) Use the pumping lemma for CFLs to show that the following languages over $\Sigma=\{0,1\}$ are not context free:
a. $\left\{0^{i} 1^{\mathrm{j}} 0^{\mathrm{i}} 1^{\mathrm{j}} \mid \mathrm{i}, \mathrm{j} \geq 0\right\}$
b. $\left\{w w^{\mathrm{R}} w \mid w \in\{0,1\}^{*}\right\}$
4. (20 points; 10 each) Give the sequence of configurations (see page 144 in the text for a sample run; page 132 in $1^{\text {st }}$ ed) that the Turing machine M_{1} (Figure 3.10 in $2^{\text {nd }}$ edition only) enters on the following input strings:
a. $01 \# 0$
b. 101\#101

Note: Do not use the machine M_{1} in the $1^{\text {st }}$ edition (Figure 3.5 in that edition); this is a different and much larger machine. Use the machine M_{1} in the $2^{\text {nd }}$ edition.

