CSE 322 Winter 2006

Homework Assignment # 5

Due Date: Friday, Feb 24 (at the beginning of class)

- (10 points: 5 points each) Consider the CFG G₄ in Exercise 2.1 in the textbook (both editions). Give <u>parse trees</u> and <u>leftmost derivations</u> for the following strings:
 a. ((a) × a)
 - b. $a + (a \times (a + a))$
- 2. (35 points: 7 points each) Let $\Sigma = \{0,1\}$. Give CFGs that generate the following languages over Σ :
 - a. $\{w \mid w \text{ contains the substring } 10 \text{ and ends in } 0\}$
 - b. $\{w \mid w \text{ contains an odd number of 0's and at least two 1's}\}$
 - c. the set of all strings except the empty string and the string 0
 - d. $\{1^{i}01^{j}01^{k} \mid i, j \ge 1 \text{ and } k = i + j\}$
 - e. { w | w = w_1w_2 where w_1, w_2 \in \Sigma^*, |w_1| = |w_2| and w_1 \neq w_2 }
- 3. (15 points: 5 points each) Show that context-free languages are closed under the following operations:
 - a. concatenation
 - b. string reversal
 - c. Suffix, where for any language L, Suffix(L) = $\{y \mid y \in \Sigma^* \text{ and } xy \in L \text{ for some string } x \in \Sigma^*\}$
- 4. (20 points: 10 points each) Let $\Sigma = \{0,1\}$.
 - a. Show that the following CFG is ambiguous: $S \rightarrow ABA \qquad A \rightarrow 0A \mid \epsilon \qquad B \rightarrow 1B \mid \epsilon$
 - b. Give an equivalent unambiguous CFG.
- 5. (20 points: 10 points each) Give <u>informal descriptions</u> (as in Example 2.16 in the textbook (2.10 in the 1st ed.)) and <u>state diagrams</u> of pushdown automata (PDA) for the following languages over $\Sigma = \{0,1\}$:
 - a. $\{w \mid \text{the number of 0s in } w \text{ is two times the number of 1s in } w\}$
 - b. $\{0^{i}10^{j}10^{k} | i = j \text{ or } j = k\}$