CSE 322 Winter 2006

Homework Assignment \#5

Due Date: Friday, Feb 24 (at the beginning of class)

1. (10 points: 5 points each) Consider the CFG G_{4} in Exercise 2.1 in the textbook (both editions). Give parse trees and leftmost derivations for the following strings:
a. $\quad(\mathrm{a}) \times \mathrm{a})$
b. $a+(a \times(a+a))$
2. (35 points: 7 points each) Let $\Sigma=\{0,1\}$. Give CFGs that generate the following languages over Σ :
a. $\{\mathrm{w} \mid \mathrm{w}$ contains the substring 10 and ends in 0$\}$
b. $\{\mathrm{w} \mid \mathrm{w}$ contains an odd number of 0 's and at least two 1 's $\}$
c. the set of all strings except the empty string and the string 0
d. $\left\{1^{\mathrm{i}} 01^{\mathrm{j}} 01^{\mathrm{k}} \mid \mathrm{i}, \mathrm{j} \geq 1\right.$ and $\left.\mathrm{k}=\mathrm{i}+\mathrm{j}\right\}$
e. $\left\{\mathrm{w} \mid \mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2}\right.$ where $\mathrm{w}_{1}, \mathrm{w}_{2} \in \Sigma^{*},\left|\mathrm{w}_{1}\right|=\left|\mathrm{w}_{2}\right|$ and $\left.\mathrm{w}_{1} \neq \mathrm{w}_{2}\right\}$
3. (15 points: 5 points each) Show that context-free languages are closed under the following operations:
a. concatenation
b. string reversal
c. Suffix, where for any language $L, \operatorname{Suffix}(L)=\left\{y \mid y \in \Sigma^{*}\right.$ and $x y \in L$ for some string $\left.x \in \Sigma^{*}\right\}$
4. (20 points: 10 points each) Let $\Sigma=\{0,1\}$.
a. Show that the following CFG is ambiguous:

$$
\mathrm{S} \rightarrow \mathrm{ABA} \quad \mathrm{~A} \rightarrow 0 \mathrm{~A}|\varepsilon \quad \mathrm{~B} \rightarrow 1 \mathrm{~B}| \varepsilon
$$

b. Give an equivalent unambiguous CFG.
5. (20 points: 10 points each) Give informal descriptions (as in Example 2.16 in the textbook (2.10 in the $1^{\text {st }}$ ed.)) and state diagrams of pushdown automata (PDA) for the following languages over $\Sigma=\{0,1\}$:
a. $\{w \mid$ the number of 0 s in w is two times the number of 1 s in $w\}$
b. $\left\{0^{i} 10^{j} 10^{\mathrm{k}} \mid \mathrm{i}=\mathrm{j}\right.$ or $\left.\mathrm{j}=\mathrm{k}\right\}$

